跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林喬文
研究生(外文):Chiao-Wen Lin
論文名稱:考量使用者暈眩之基於圖塊分割的適應性360度全景影音串流
論文名稱(外文):Cybersickness-aware tile-based adaptive 360 video streaming
指導教授:廖婉君廖婉君引用關係
指導教授(外文):Wanjiun Liao
口試委員:楊得年陳彥仰林嘉文陳炳宇
口試委員(外文):De-Nian YangMike Y. ChenChia-Wen LinBing-Yu Chen
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:36
中文關鍵詞:虛擬實境360 度影片圖塊分割式串流虛擬實境暈眩用戶體驗特質馬可夫決策過程演算法
外文關鍵詞:virtual reality360° videotile-based streamingcybersicknessQuality of ExperienceMarkov Decision Processalgorithm
DOI:10.6342/NTU202002874
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著各種虛擬實境裝置的出現,360度影片在生活中會有著越來越重要的地位。與傳統影片相比,360度影片串流所需的頻寬消耗為數倍甚至十多倍,因此圖塊(tile)分割式串流被用來有效率的傳輸這類有高頻寬與低延遲需求的360度影片。傳統的圖塊選擇與串流演算法在測量用戶體驗特質(Quality of Experience)時並沒有考慮到一項重要的因素:虛擬實境暈眩(cybersickness),因此本文制定一個新的最佳化問題:圖塊選擇與暈眩控制(TSCC),在設計有暈眩減輕方法之360度影片串流系統中,最小化選擇圖塊與使用暈眩減輕方法的成本。為了解決TSCC,我們將圖塊與暈眩減輕方法之參數的選擇建構為馬可夫決策過程(Markov Decision Process)來找到小型案例之最佳解,接著抽取其中的特質來設計有效且快速的演算法:有效圖塊選擇與暈眩減輕演算法(ETSCAA)來解決大型案例。模擬結果顯示在各種頻寬、圖塊數量、視區(viewport)的變化下,我們的演算法皆能勝過傳統演算法。
With the emergence of various virtual reality (VR) devices, 360° videos are guaranteed to play increasingly important roles in the near future. In contrast to traditional 2D videos, the bandwidth requirement for streaming a 360° video is an order of magnitude larger. The tile-based streaming algorithm has been proposed to effectively deliver bandwidth-hungry and delay-restricted 360° videos. However, previous algorithms do not consider cybersickness, one of the significant factors of Quality of Experience (QoE), as part of the QoE metric. In this thesis, we investigate a new optimization problem, named Tile Selection with Cybersickness Control Problem (TSCC), in a tile-based adaptive 360°video streaming system with cybersickness alleviation. We aim to minimize the cost function by choosing the best tile set for prefetching and deciding how to use the cybersickness alleviation methods. To solve TSCC, we model the tile and parameter selection as a Markov Decision Process to find the optimal solutions in small cases. Then we extract the intrinsic ideas behind to devise an efficient and effective heuristic algorithm, named Effective Tile Selection and Cybersickness Alleviation Algorithm (ETSCAA), for large cases. Simulation results manifest that our algorithm can outperform baselines no matter bandwidth condition, number of tiles, or viewport size.
Abstract i
List of Figures iv
List of Tables v
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 System model and Problem formulation 7
2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Transition of the expected viewport distortion . . . . . . . 11
2.2.2 Transition of the user head rotation . . . . . . . . . . . . 12
2.2.3 Transition of the packet queue occupancy . . . . . . . . . 13
2.2.4 Transition of the sickness queue occupancy . . . . . . . . 13
2.3 Optimal policy of MDP . . . . . . . . . . . . . . . . . . . . . . . 14
3 Algorithm 16
3.1 Algorithm ETSCAA . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Viewport Prediction and Tile Selection . . . . . . . . . . 18
3.1.2 Tile Quality Initialization . . . . . . . . . . . . . . . . . . 19
3.1.3 Tile Quality Enhancement . . . . . . . . . . . . . . . . . 20
3.1.4 Final Action Selection . . . . . . . . . . . . . . . . . . . 21
3.2 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Performance Evaluation 23
4.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Scenario 1: Bandwidth . . . . . . . . . . . . . . . . . . . 24
4.2.2 Scenario 2: Number of tiles . . . . . . . . . . . . . . . . 27
4.2.3 Scenario 3: Original viewport size . . . . . . . . . . . . . 30
5 Conclusion 33
Reference 34
[1] Cisco, Virtual Networking Index, “Global mobile data traffic forecast update, 2017-2022,” white paper, December 2018, available online at http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
[2] M. Zink, R. Sitaraman, and K. Nahrstedt, “Scalable 360° video stream delivery: Challenges, solutions, and opportunities,” Proceedings of the IEEE, vol.107, no. 4, pp. 639–650, 2019.
[3] T. M. Porcino, E. W. G. Clua, D. G. Trevisan, C. N. Vasconcelos, and L. Valente, “Minimizing cybersickness in head-mounted display systems: Design guidelines and applications,” 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), 2017.
[4] J.-Y. Lee, P.-H. Han, L. Tsai, R.-D. Peng, Y.-S. Chen, K.-W. Chen, and Y.-P. Hung, “Estimating the simulator sickness in immersive virtual reality with optical flow analysis,” in SIGGRAPH Asia 2017, 2017.
[5] D. N., S. P., and S. A., “Can simulator sickness be avoided? a review on temporal aspects of simulator sickness.” Frontiers in psychology, 2018.
[6] G. Wang and A. Suh, “User adaptation to cybersickness in virtual reality: A qualitative study,” in Proceedings of the 27th European Conference on Information Systems (ECIS), 2019.
[7] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360ProbDASH: Improving QoE of 360 video streaming using tile-based HTTP adaptive streaming,” in Proceedings of the 25th ACM International Conference on Multimedia, 2017, p. 315–323.
[8] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical viewport adaptive 360-degree video streaming for mobile devices,” in Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, 2018, p. 99–114.
[9] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen, “BAS-360°: Exploring spatial and temporal adaptability in 360-degree videos over HTTP/2,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018.
[10] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai, “A two-tier system for on-demand streaming of 360-degree video over dynamic networks,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 43–57, 2019.
[11] T. Hosfeld, L. Skorin-Kapov, P. E. Heegaard, M. Varela, and K.-T. Chen, “On additive and multiplicative QoS-QoE models for multiple QoS parameters,” in Proceedings of PQS, 2016.
[12] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen, “A survey of emerging concepts and challenges for QoE management of multimedia services,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 14, May 2018.
[13] J. Nightingale, P. Salva-Garcia, J. M. A. Calero, and Q.Wang, “5G-QoE: QoE modelling for ultra-HD video streaming in 5G networks,” IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 621–634, 2018.
[14] T. Zhao, Q. Liu, and C. W. Chen, “QoE in video transmission: A user experience-driven strategy,” IEEE Communications Surveys Tutorials, vol. 19, no. 1, pp. 285–302, 2017.
[15] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu, “Fixation prediction for 360° video streaming in head-mounted virtual reality,” in Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video, 2017, p. 67–72.
[16] A. S. Fernandes and S. K. Feiner, “Combating VR sickness through subtle dynamic field-of-view modification,” in 2016 IEEE Symposium on 3D User Interfaces (3DUI), 2016.
[17] S. Kim, S. Lee, N. Kala, J. Lee, and W. Choe, “An effective FoV restriction approach to mitigate VR sickness on mobile devices: An effective approach to mitigate VR sickness,” Journal of the Society for Information Display, vol. 26, 2018.
[18] K. Carnegie and T. Rhee, “Reducing visual discomfort with HMDs using dynamic depth of field,” IEEE Computer Graphics and Applications, vol. 35, no. 5, pp. 34–41, 2015.
[19] D. Heyman and M. Sobel, Stochastic Models in Operations Research Volume II: Stochastic Optimization. Dover Publications, 2003.
[20] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, “HEVC-compliant tile-based streaming of panoramic video for virtual reality applications,” in Proceedings of the 24th ACM International Conference on Multimedia, 2016.
[21] C. Yeo, H. L. Tan, and Y. H. Tan, “On rate distortion optimization using SSIM,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 7, pp. 1170–1181, 2013. 36
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊