跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎典昇
研究生(外文):Tien-Shen Li
論文名稱:具可調變直流鏈電壓之馬達驅動系統擾動解耦策略
論文名稱(外文):Current Disturbance Decoupling Strategy on Motor Drives with Variable DC-Link Voltage
指導教授:陳耀銘
指導教授(外文):Yaow-Ming Chen
口試委員:金藝璘張淵智唐丞譽羅國原陳景然
口試委員(外文):Katherine A. KimYuan-Chih ChangCheng-Yu TangKuo-Yuan LoChing-Jan Chen
口試日期:2020-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:85
中文關鍵詞:馬達驅動器直流鏈電壓控制直流轉直流轉換器直流轉交流變頻器擾動解耦
外文關鍵詞:Motor DriveDC-Link Voltage ControlDC-DC ConverterDC-AC InverterDisturbance Decouple
DOI:10.6342/NTU202003913
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一應用於可調變直流鏈電壓馬達驅動器之電流擾動解耦策略。在常見的馬達驅動器中,一般使用固定直流鏈電壓之電壓源變頻器以驅動馬達。然而,當馬達操作在低轉速區間時,對直流鏈電壓的需求沒那麼高,而越高的直流鏈電壓將導致變頻器之相電壓諧波越高。這些電壓諧波成分會在馬達上產生更高的功率損耗。因此,為了降低馬達相電壓之總諧波失真,本論文採用電壓源變頻器串聯前級電源轉換器之雙級馬達驅動架構,以調控直流鏈電壓。
然而,控制整合之雙級系統並不似分別控制轉換器與變頻器那樣簡單。兩級之間的交叉耦合物理量將影響直流鏈電壓之控制,直流鏈電壓又將限制馬達之轉速控制。本論文將針對交叉耦合之現象加以介紹並分析其對直流鏈電壓控制穩定度之影響。根據這些分析,本論文提出之電流擾動解耦策略將可改善直流鏈電壓之動態響應,並簡化前級轉換器之電壓補償器設計。由於此電流擾動解耦策略在硬體上不需要額外的元件,在提升雙級馬達驅動器表現的同時,幾乎不需做額外的取捨。最後,電壓總諧波失真之降低與電流解耦策略的效果都將透過電腦模擬與實際硬體實作來驗證。
A current disturbance decoupling strategy (CDDS) on motor drive with variable DC-link voltage is proposed in this thesis. In general motor drive, voltage source inverter (VSI) with a constant DC-link voltage is normally adopted. However, operating in low-speed region does not require the high DC-link voltage and higher DC-link voltage causes higher harmonics on VSI phase voltage, which results in higher power loss on the motor. Hence, for the purpose of reducing the Total Harmonic Distortion (THD) on phase voltage, dual-level motor drive topology which is a VSI in conjunction with a front-end converter is adopted in this thesis to manipulate the DC-link voltage.
Nevertheless, controlling the integrated system is not as simple as controlling the converter and the VSI separately. The cross-coupling quantities between the two stages would affect the DC-link voltage control that the speed control of the motor may get further influenced. The cross-coupling phenomenon will be analyzed in this thesis, as well as its effect on DC-link voltage control stability. On the basis of the analysis, the proposed CDDS can improve the dynamics of the DC-link voltage control and simplify the compensator design of the front-end converter. Since there is no extra hardware components required for the CDDS, a better performance of the dual-level motor drive can be achieved while hardly any trade-off. Computer simulation and hardware experimental results are presented to verify the performance of voltage THD reduction and the effectiveness of the proposed CDDS.
口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
ABBREVIATIONS xiii
Chapter 1 Introduction 1
1.1 Research Background and Motive 1
1.2 Outline 3
Chapter 2 Space Vector Modulation on Motor Drive 5
2.1 Mathematical Model of Permanent Magnetic Synchronous Motor 6
2.1.1. Equivalent Single-Phase Motor Model 9
2.1.2. Frame Transformation 10
2.1.3. PMSM Model 12
2.2 Field-Oriented Control Strategy 14
2.3 Space Vector Pulse-Width Modulation 16
2.3.1. Pulse Width Modulation of Three Phase Inverters 16
2.3.2. Principles of Space Vector Modulation 17
2.3.3. Total Harmonic Distortion Analysis of SVPWM 21
Chapter 3 Motor Drive with Variable DC-link Voltage 25
3.1 Three-Phase Inverter with Front-End DC/DC Converter 25
3.2 Control Strategy of Front-End Buck Converter 26
3.2.1 Dynamic Model 27
3.2.2 Compensator Design 28
3.3 Control Strategy of Motor Drive with Variable DC-Link Voltage 32
3.3.1 Dynamic Model of Dual-Level Motor Drive 33
3.3.2 Current Disturbance Decoupling Strategy 34
3.3.3 Control Strategy Implementation based on Three-Phase System 39
3.4 Computer Simulation and Verification 42
3.4.1 THD Reduction Verification 45
3.4.2 Disturbance Decoupling Verification 45
Chapter 4 Hardware Implementation 49
4.1 Power Stage 50
4.1.1 Power Switch 50
4.1.2 Design of the Buck Power Filter 51
4.2 Control Stage 52
4.2.1 Microcontroller 52
4.2.2 Gate Driver Circuit 53
4.2.3 Encoder signal isolator circuit 54
4.2.4 Voltage Detection Circuit 55
4.2.5 Current Detection Circuit 55
4.2.6 Over-Current Protection Circuit 57
4.3 System Control Procedure 59
5.3.1 Main Program 59
5.3.2 EPWM Interrupt Function 60
Chapter 5 Experimental Verification 66
5.1 Experiment Platform 66
5.2 Voltage THD Verification 68
5.3 Current Disturbance Decoupling Strategy Verification 70
5.3.1 Low speed region 70
5.3.2 Medium speed region 73
5.3.3 High speed region 75
Chapter 6 Conclusions and Future Research 78
6.1 Summary and Major Contributions 78
6.2 Suggestions for Future Research 79
REFERENCES 80
[1]B. K. Bose, "Power electronics and motion control-technology status and recent trends," IEEE Trans. on Industry Applications, vol. 29, no. 5, pp. 902-909, Sept.-Oct. 1993.
[2]T. M. Jahns and V. Blasko, "Recent advances in power electronics technology for industrial and traction machine drives," Proceedings of the IEEE, vol. 89, no. 6, pp. 963-975, June 2001.
[3]A. Tessarolo, C. Bassi, G. Ferrari, D. Giulivo, R. Macuglia and R. Menis, "Investigation Into the High-Frequency Limits and Performance of Load Commutated Inverters for High-Speed Synchronous Motor Drives," IEEE Trans. on Industrial Electronics, vol. 60, no. 6, pp. 2147-2157, June 2013.
[4]R. Ni, D. Xu, G. Wang, L. Ding, G. Zhang and L. Qu, "Maximum Efficiency Per Ampere Control of Permanent-Magnet Synchronous Machines," IEEE Trans. on Industrial Electronics, vol. 62, no. 4, pp. 2135-2143, April 2015.
[5]X. Zhou, J. Sun, H. Li and X. Song, "High Performance Three-Phase PMSM Open-Phase Fault-Tolerant Method Based on Reference Frame Transformation," IEEE Trans. on Industrial Electronics, vol. 66, no. 10, pp. 7571-7580, Oct. 2019.
[6]X. Ding, G. Liu, M. Du, H. Guo, C. Duan and H. Qian, "Efficiency Improvement of Overall PMSM-Inverter System Based on Artificial Bee Colony Algorithm Under Full Power Range," IEEE Trans. on Magnetics, vol. 52, no. 7, pp. 1-4, July 2016.
[7]A. Balamurali, G. Feng, C. Lai, J. Tjong and N. C. Kar, "Maximum Efficiency Control of PMSM Drives Considering System Losses Using Gradient Descent Algorithm Based on DC Power Measurement," IEEE Trans. on Energy Conversion, vol. 33, no. 4, pp. 2240-2249, Dec. 2018.
[8]Shuo Zhang, Xiaomin Zhou and Dawei Gao, "Strategy of efficiency optimization of PMSM-DTC system used for EVs," 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 2014, pp. 1-4.
[9]J. Wu, J. Wang, C. Gan, Q. Sun and W. Kong, "Efficiency Optimization of PMSM Drives Using Field-Circuit Coupled FEM for EV/HEV Applications," IEEE Access, vol. 6, pp. 15192-15201, 2018.
[10]A. Fukuma, S. Kanazawa, D. Miyagi and N. Takahashi, "Investigation of AC loss of permanent magnet of SPM motor considering hysteresis and eddy-current losses," IEEE Trans. on Magnetics, vol. 41, no. 5, pp. 1964-1967, May 2005.
[11]A. R. Beig, G. Narayanan and V. T. Ranganathan, "Modified SVPWM Algorithm for Three Level VSI With Synchronized and Symmetrical Waveforms," IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 486-494, Feb. 2007.
[12]S. Chee, S. Ko, H. Kim and S. Sul, "Common-Mode Voltage Reduction of Three-Level Four-Leg PWM Converter," IEEE Trans. on Industry Applications, vol. 51, no. 5, pp. 4006-4016, Sept.-Oct. 2015.
[13]S. Srivastava and M. A. Chaudhari, "Comparison of SVPWM and SPWM Schemes for NPC Multilevel Inverter," 2020 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 2020, pp. 1-6.
[14]W. Liang, J. Wang, P. C. K. Luk, W. Fang, and W. Fei, “Analytical Modeling of Current Harmonic Components in PMSM Drive With Voltage-Source Inverter by SVPWM Technique,” IEEE Trans. on Energy Conversion, vol. 29, no. 3, pp. 673–680, Sep. 2014.
[15]A. Boglietti, P. Ferraris, M. Lazzari and M. Pastorelli, "Change of the iron losses with the switching supply frequency in soft magnetic materials supplied by PWM inverter," IEEE Trans. on Magnetics, vol. 31, no. 6, pp. 4250-4252, Nov. 1995.
[16]V. Ioniţă, E. Cazacu and L. Petrescu, "Effect of voltage harmonics on iron losses in magnetic cores with hysteresis," 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, 2018, pp. 1-5.
[17]L. Petrea, C. Demian, J. F. Brudny and T. Belgrand, "High-Frequency Harmonic Effects on Low-Frequency Iron Losses," IEEE Trans. on Magnetics, vol. 50, no. 11, pp. 1-4, Nov. 2014.
[18]N. Boubaker, D. Matt, P. Enrici, F. Nierlich and G. Durand, "Measurements of Iron Loss in PMSM Stator Cores Based on CoFe and SiFe Lamination Sheets and Stemmed From Different Manufacturing Processes," IEEE Trans. on Magnetics, vol. 55, no. 1, pp. 1-9, Jan. 2019.
[19]J.F. Moynihan, M.G. Egan, J M.D Murphy, "Theoretical spectra of space-vector-modulated waveforms", IEE Proc.-Electric Power Applications, Vol. 145, NO. 1, pp.17-24, Jan 1998.
[20]D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters – Principles and Practice. Piscataway, NJ: The IEEE, Inc., Oct. 2003.
[21]M. Ma, X. He, and B. W. Williams, “Synchronization Analysis of Space-Vector PWM Converters With Distributed Control,” IEEE Trans. on Power Electronics, vol. 25, no. 12, pp. 3026–3036, Dec. 2010.
[22]J. T. Boys and P. G. Handley, "Harmonic analysis of space vector modulated PWM waveforms," IEE Proceedings B - Electric Power Applications, vol. 137, no. 4, pp. 197-204, July 1990.
[23]Kaiping Yu, Hong Guo, Zedong Sun and Zhiyong Wu, "Efficiency optimization control of Permanent Magnet Synchronous Motor for Electric Propulsion System," 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, 2013, pp. 56-61.
[24]W. Liang, J. Wang, P. C. Luk, W. Fang and W. Fei, "Analytical Modeling of Current Harmonic Components in PMSM Drive With Voltage-Source Inverter by SVPWM Technique," IEEE Trans. on Energy Conversion, vol. 29, no. 3, pp. 673-680, Sept. 2014.
[25]C. Zwyssig, J. W. Kolar and S. D. Round, "Megaspeed Drive Systems: Pushing Beyond 1 Million r/min," IEEE/ASME Trans. on Mechatronics, vol. 14, no. 5, pp. 564-574, Oct. 2009.
[26]C. Zwyssig, S. D. Round and J. W. Kolar, "An Ultrahigh-Speed, Low Power Electrical Drive System," IEEE Trans. on Industrial Electronics, vol. 55, no. 2, pp. 577-585, Feb. 2008.
[27]Y. Lai, K. Lee, J. Tseng, Y. Chen and T. Hsiao, "Efficiency Comparison of PWM-Controlled and PAM-Controlled Sensorless BLDCM Drives for Refrigerator Applications," 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, 2007.
[28]W. Chen, Y. Liu, X. Li, T. Shi and C. Xia, "A Novel Method of Reducing Commutation Torque Ripple for Brushless DC Motor Based on Cuk Converter," IEEE Trans. on Power Electronics, vol. 32, no. 7, pp. 5497-5508, July 2017.
[29]H. O. Yang and R. D. Lorenz, "Torque Ripple Minimization in Six-Step PMSM Drives via Variable and Fast DC Bus Dynamics," IEEE Trans. on Industry Applications, vol. 55, no. 4, pp. 3791-3802, July-Aug. 2019.
[30]K. Taniguchi and A. Okumura, "A PAM inverter system for vector control of induction motor," Conference Record of the Power Conversion Conference - Yokohama 1993, Yokohama, Japan, 1993, pp. 478-483.
[31]T. Schoenen, M. S. Kunter, M. D. Hennen and R. W. De Doncker, "Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles," 2010 IEEE Vehicle Power and Propulsion Conference, Lille, 2010, pp. 1-5.
[32]J. O. Estima and A. J. Marques Cardoso, "Efficiency Analysis of Drive Train Topologies Applied to Electric/Hybrid Vehicles," IEEE Trans. on Vehicular Technology, vol. 61, no. 3, pp. 1021-1031, March 2012.
[33]A. M. Howlader, N. Urasaki, T. Senjyu and A. Yona, "Wide-Speed-Range optimal PAM control for permanent magnet synchronous motor," 2009 International Conference on Electrical Machines and Systems, Tokyo, 2009, pp. 1-5.
[34]T. Schoenen, A. Krings, D. van Treek and R. W. De Doncker, "Maximum DC-link voltage utilization for optimal operation of IPMSM," 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, 2009, pp. 1547-1550.
[35]I. Ralev, T. Lange and R. W. De Doncker, "Wide speed range six-step mode operation of IPMSM drives with adjustable dc-link voltage," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, 2014, pp. 2987-2993.
[36]F. D. Kieferndorf, M. Förster, and T. A. Lipo, “Reduction of DC-bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. on Industry Applications, vol. 40, no. 2, pp. 607–614, Mar./Apr. 2004.
[37]C. Yu, J. Tamura and R. D. Lorenz, "Optimum DC Bus Voltage Analysis and Calculation Method for Inverters/Motors With Variable DC Bus Voltage," IEEE Trans. on Industry Applications, vol. 49, no. 6, pp. 2619-2627, Nov.-Dec. 2013.
[38]Tasi-Fu Wu and Yu-Kai Chen, "Modeling PWM DC/DC converters out of basic converter units," IEEE Trans. on Power Electronics, vol. 13, no. 5, pp. 870-881, Sep. 1998.
[39]A. Ayachit and M. K. Kazimierczuk, "Averaged Small-Signal Model of PWM DC-DC Converters in CCM Including Switching Power Loss," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 262-266, Feb. 2019.
[40]C. Busada and J. Solsona, "Nonlinear Dynamic Average Model of a DC-DC Converter," IEEE Latin America Transactions, vol. 12, no. 5, pp. 904-909, Aug. 2014.
[41]Y. Yan, F. Lee, P. Mattavelli, and P.-H. Liu, “I2 average current mode control for switching converters,” IEEE Trans. on Power Electronics, vol. 29, no. 4, pp. 2027–2036, Apr. 2014.
[42]Y. Yan, "Equivalent Circuit Model for Current Mode Controls and Its Extensions", Virginia Polytechnic Institute and State University, 2013.
[43]E. de C Gomes, L. de S Ribeiro, J. Caracas, S. Catunda, and R. Lorenz, ”State space decoupling control design methodology for switching converters,” Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, Sept 2010, pp. 4151–4158.
[44]M. Konghirun and L. Xu, "A Fast Transient-Current Control Strategy in Sensorless Vector-Controlled Permanent Magnet Synchronous Motor," IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 1508-1512, Sept. 2006.
[45]A. M. Hava, S. K. Sul, R. J. Kerkman, and T. A. Lipo, “Dynamic overmodulation characteristics of triangle intersection PWM methods,” IEEE Trans. on Industrial Application, vol. 35, no. 4, pp. 896–907, Jul./Aug. 1999.
[46]H. Lee, S. Jung and S. Sul, "A Current Controller Design for Current Source Inverter-Fed AC Machine Drive System," IEEE Trans. on Power Electronics, vol. 28, no. 3, pp. 1366-1381, March 2013.
[47]S. Li and H. Gu, "Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System," IEEE Trans. on Industrial Informatics, vol. 8, no. 4, pp. 767-779, Nov. 2012.
[48]F. Briz, M. W. Degner and R. D. Lorenz, "Analysis and design of current regulators using complex vectors," IEEE Trans. on Industry Applications, vol. 36, no. 3, pp. 817-825, May-Jun. 2000.
[49]Y. Shi, B. Liu and S. Duan, "Low-Frequency Input Current Ripple Reduction Based on Load Current Feedforward in a Two-Stage Single-Phase Inverter," IEEE Trans. on Power Electronics, vol. 31, no. 11, pp. 7972-7985, Nov. 2016.
[50]Y. Lee, J. Yoo, H. Jung and S. Sul, "Control Strategy of Single-Phase Active Front-End Cascaded H-Bridge Under Cell Fault Condition," IEEE Trans. on Power Electronics, vol. 34, no. 5, pp. 4780-4793, May 2019.
[51]H. Zhou, S. Xiao, G. Yang and H. Geng, "Modeling and Control for a Bidirectional Buck–Boost Cascade Inverter," IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1401-1413, Mar. 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top