跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇偉建
研究生(外文):Wai-Zhian Soo
論文名稱:水平式攪水機設備效率研究
論文名稱(外文):Study on the Efficiency of Horizontal Type\'s Aeration Equipment
指導教授:侯文祥侯文祥引用關係
指導教授(外文):Wen-Shang Hou
口試委員:謝正義胡明哲
口試委員(外文):Cheng-I HsiehMing-Che Hu
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:72
中文關鍵詞:曝氣機氧氣質傳養殖池溶氧流場
外文關鍵詞:AeratorOxygen-transferCulture PondDissolved OxygenFlow Field
DOI:10.6342/NTU202002239
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水產養殖的過程中,養殖池易受到外在因素影響水質,造成水質品質不穩定現象。為了避免養殖池水質品質不佳狀況,確保氧氣供應充足與分佈均勻,會設置各種曝氣設備在養殖池內。在台灣的曝氣設備以垂直攪水式之葉輪水車為主,亦有其他種類之曝氣設備,然而這些不同類種之曝氣設備有不同的產生效果,對此相關研究也多著重於葉輪式水車。
本研究探討兩種水平式攪水機耘水機及湧浪機,在台大醉月湖進行實驗,以流速與溶氧垂直分布與小型分布實測作為重點。另外,本研究利用3D列印機製作出水平式攪水機之縮小模型在水族缸內進行研究,僅測攪水範圍以及增氧效率之數據,進而了解流場分布與增氧效果,並與文獻之垂直式攪水設備效率作比較,以了解不同規格之曝氣設備對於養殖池的水體各分層間之影響。
結果顯示,耘水機設備在增氧效率方面較佳,且水體循環效果範圍亦佳。其標準氧氣轉換效率(SOTR)與標準曝氣效率(SAE)數據分別為2.50×10-5 kgO2/hr及0.02 kgO2/kw/hr,因設備縮小20倍之標準試驗結果,並無文獻可作比較。染料試驗部分,水體循環之顯示染料由葉扇從上方打散至池壁沉入水底再經由設備中心吸上至葉扇再打散至池壁之重複流況。
In the process of aquaculture, the water quality of aquaculture ponds is easily affected by external factors, resulting in the instability of water quality. In order to avoid the poor water quality of the culture pond and ensure adequate oxygen supply and even distribution, various types of aeration equipment are installed in the culture pond. There are various kinds of aeration equipment, but the one mainly used in Taiwan is the vertical impeller type waterwheel. These different kinds of aeration equipment have different effects, and the similar studies focus more on the waterwheel’s impeller.
In this study, two kinds of horizontal Leaf Fan Form and Wave Maker generator were studied. The experiment was carried out in a field pond. This research focuses on the measurements of flow rate and dissolved oxygen and small distribution. Furthermore, the study also used 3D printing technology to make smaller models of a horizontal mixing water machine and observe their effects in aquariums. The range of stirring water and the efficiency of oxygen enrichment were measured to understand the flow field distribution and the effect of aeration on the improvement of water quality and environment. Moreover, they were also measured to compare the efficiency of vertical mixing equipment in literature, and to understand the effect of different specifications of aeration equipment on different layers of water in the aquaculture pond.
The results show that the efficiency of the Leaf Fan Form is better, and the range of water circulation is also better. The SOTR and SAE data were 2.50×10-5 kgO2/ hr and 0.02 kgO2/kw/hr, respectively. Since the size of the aeration equipment was reduced by 20 times, there is no literature available for comparison. In the dye test part, the water circulation shows the repeated flow in which the dye is dispersed from the leaf fan above to the wall and sinks to the bottom, and then sucked up through the center of the equipment to the fan and then dispersed to the wall.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
第二章 文獻探討 4
2.1 曝氣增氧設備介紹 4
2.1.1 耘水機 6
2.1.2 湧浪機 7
2.1.3 臺製葉輪式水車 9
2.2 溶氧分佈與曝氣法相關理論 10
2.2.1 溶氧 10
2.2.2 總體氧氣質傳係數 12
2.2.3 溶氧傳遞效率相關係數 14
2.3 養殖池增氧速率與曝氣法及流場關係 15
第三章 研究材料、設備與方法 19
3.1 實驗流程 19
3.2 實驗設備簡介 21
3.3 現場試驗方法 25
3.4 增氧效率標準試驗方法 28
3.5 模型流場試驗方法 30
3.6 資料整理法 31
第四章 結果與討論 32
4.1 現場試驗之結果與討論 32
4.1.1 未開啟設備之水域環境 33
4.1.2 開啟設備後之溶氧與流速環境 35
4.1.3 近底泥層增氧效率 40
4.2 增氧效率標準試驗之結果與討論 45
4.2.1 SOTR與SAE之探討 46
4.3 耘水機模型流場試驗之結果與討論 48
4.3.1 探討設備擴散能力範圍 49
第五章 結論與建議 51
5.1 結論 51
5.2 建議 52
參考文獻 53
附錄A、耘水機發明專利 59
附錄B、湧浪機新型專利 66
附錄C、增氧效率標準試驗之結果 69
中文部分:

1.蔡世麒,2018,生物法減少藻華之效率研究-以台大醉月湖中湖為例,國立臺灣大學生物環境工程研究所碩士論文。

2.張家輝,2011,水產養殖曝氧機之設計與驗証,國立成功大學工程科學系碩士在職專班碩士論文,p4-14。

3.吳佳真,2010,簡易式微細氣泡產生裝置規格化研發與應用研究,國立臺灣大學生物環境工程研究所碩士論文。

4.葉曉娟,2006,簡易式微細氣泡產生裝置規格化研發與應用研究,國立台灣大學生物環境工程研究所碩士論文,p12-17。

5.陳以容、侯文祥、周楚洋、林懿蘋,2015,結合生物水質管理法與物理曝氣法處理景觀湖水質之研究–以臺灣大學醉月湖為例,農業工程研討會論文集,1016–1027。

6.行政院環保署,環境水質溶氧過飽和現象說明,2010年。

7.行政院環保署,環檢所公告水中溶氧檢測方法-碘定量法 NIEA W422.53B,2018 年。

8.馬文鴻,浮台式增氧裝置,中華民國新型專利M544782,2017年。

9.陳以容、侯文祥,耘水機結構。中華民國發明專利I624220,2018年。

10.蔡榮鋒,巡弋立體增氧機-水渀渀W200,中華民國發明I268758、I257878號,2009年。

英文部分:

1.A standard for the measurement of oxygen transfer in clean water. 1984. ASCE Transfer Standards Committee, New York, N.Y.

2.Arlo W Fast, Edmundo C Tan, Desmond F Stevens, Jeffrey C Olson, Jianguang Qin, David K Barclay, 1999, Paddlewheel aerator oxygen transfer efficiencies at three salinities, Aquacultural Engineering, Volume 19, Issue 2, Pages 99-103, ISSN 0144-8609, https://doi.org/10.1016/S0144-8609(98)00044-2.

3.Avinash Kumar, Sanjib Moulick, Basant K. Singh, Bimal C. Mal, 2013, Design characteristics of pooled circular stepped cascade aeration system, Aquacultural Engineering, Volume 56, Pages 51-58, ISSN 0144-8609, https://doi.org/1 0.1016/j.aquaeng.2013.04.004.

4.Biggs, J., Williams, P., Whitfield, M., Nicolet, P., Weatherby, A., “15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation,” Aquatic Conservation-Marine and Freshwater Ecosystems, 15(6), 693-714, 2005.

5.Boyd, C.E., Watten, B.J, 1989, Aeration systems in aquaculture, Rev. Aquat. Sci., 1(3), 425–472. https://doi.org/info:doi/.

6.Chisti. M. Y. and Moo-Young. M. 1987, Airlift reactors Characteristics; applications and design considerations, Chem. Eng. Commun., 60, 195-242.

7.Claude E. Boyd, 1998, Pond water aeration systems, Aquacultural Engineering, Volume 18, Issue 1, Pages 9-40, ISSN 0144-8609.

8.Claude E. Boyd, Douglas J. Martinson, Evaluation of propeller-aspirator-pump aerators, Aquaculture, Volume 36, Issue 3, 1984, Pages 283-292, ISSN 0044-8486, https://doi.org/10.1016/0044-8486(84)90243-6.

9.Colt J. Computation of Dissolved Gas Concentrations in Water as Functions of Temperature, 1984, Salinity and Pressure, American Fisheries Society Special Publication 14.

10.Colt. J., K. Orwicz and Bouck. G., 1991, Water quality considerations and criteria for high-density fish culture with supplemental oxygen. American Fisheries Society Symposium, 10, 372-385.

11.Dong, L., Liu, J., Liu, H., Dai, C., & Gradov, D. V., 2019, Study on the internal two-phase flow of the inverted-umbrella aerator, Advances in Mechanical Engineering, https://doi.org/10.1177/1687814019871731

12.Gary L. Rogers, Aeration and circulation for effective aquaculture pond management, Aquacultural Engineering, Volume 8, Issue 5, 1989, Pages 349-355, ISSN 0144-8609, https://doi.org/10.1016/0144-8609(89)90041-1.

13.Graham, L. E., Wilcox, L. W. 2000. Algae. Prentice-Hall Inc., London. pp. 5-6, 16-17, 97-119, 151-168, 454, 591.

14.Graham, M. J. 2000. Phytoplankton Ecology. In : Graham, L. E., Wilcox, L. W., eds. Algae. Prentice-Hall Inc., London. pp. 549-598.

15.J. Paul Guyer, P.E., R.A., 2017, An Introduction to Water and Wastewater Engineering, Technology & Engineering, Pages 9-11.

16.Kamran Mahmudov, Ahmed Mahmoud, Shakya Sur, Francis C. Cruz, Amy M. Bilton, 2019, Feasibility of a wind-powered aeration system for small-scale aquaculture in developing countries, Energy for Sustainable Development, Volume 51, Pages 40-49, ISSN 0973-0826, https://doi.org/10.1016/j.esd.2019.0 5.003.

17.Liu, J., Liu, H., Dai, C., Gradov, D., & Dong, L, 2019, Study on the internal two-phase flow of the inverted-umbrella aerator, Advances in Mechanical Engineering., 11(8), https://doi.org/10.1177/1687814019871731.
18.Luis Vinatea, José W. Carvalho, 2007, Influence of water salinity on the SOTR of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs, Aquacultural Engineering, Volume 37, Issue 2, Pages 73-78, ISSN 0144-8609, https://doi.org/10.1016/j.aquaeng.200 7.02.001.

19.Mahmoud, A.H., 2016, A passive solar-thermal aeration system for rural pond aquaculture.

20.Marappan, J, Anathaikamatchi, BA, Sakkarai, S, Thiagarajan, R, Muthusamy, D, Kuppusamy, M, Moturi, M, Bera, A, Ramasamy, P, Shanmugam, S, 2020, Assessment of the new generation aeration systems efficiency and water current flow rate, its relation to the cost economics at varying salinities for Penaeus vannamei culture, Aquaculture Research, Volume 51, Issue 5, Pages 2112-2124.

21.Mohamed Adel, Mohamed R. Shaalan, Radwan M. Kamal, Diaa S. El Monayeri, 2019, A comparative study of impeller aerators configurations, Alexandria Engineering Journal, Volume 58, Issue 4, Pages 1431-1438, ISSN 1110-0168, htt ps://doi.org/10.1016/j.aej.2019.11.014.

22.N. T. Nguyen and R. Matsuhashi, 2019, "An Optimal Design on Sustainable Energy Systems for Shrimp Farms," in IEEE Access, vol. 7, pp. 165543-165558, doi: 10.1109/ACCESS.2019.2952923.

23.Nathanael Hishamunda, Neil B. Ridler, Pedro Bueno, Wilfredo G. Yap, 2009, Commercial aquaculture in Southeast Asia: Some policy lessons, Food Policy, Volume 34, Issue 1, Pages 102-107, ISSN 0306-9192, https://doi.org/10.1016/ j.foodpol.2008.06.006.

24.R.F. Weiss, 1970, The solubility of nitrogen, oxygen and argon in water and seawater, Deep Sea Research and Oceanographic Abstracts, Volume 17, Issue 4, Pages 721-735, ISSN 0011-7471, https://doi.org/10.1016/0011-7471(70)90037-9.

25.Takahiro Adachi, 2015, Oxygen transfer and power consumption in an aeration system using mist and circulation flow generated by a rotating cone, Chemical Engineering Science, Volume 126, Pages 625-632, ISSN 0009-2509, https://doi.o rg/10.1 016/j.ces.2015.01.009.

26.Takahiro Adachi, Toshiki Kubo, Koji Higashiono, Mitsuharu Terashima, Yutaro Takahashi, 2018, Correlation of oxygen mass transfer and power consumption in an aeration system by a rotating cone, Chemical Engineering and Processing - Process Intensification, Volume 125, Pages 105-111, ISSN 0255-2701, https://doi. org/10.1016/j.cep.2018.01.013.

27.Taufik Ahmad, Claude E. Boyd, 1988, Design and performance of paddle wheel aerators, Aquacultural Engineering, Volume 7, Issue 1, Pages 39-62, ISSN 0144-8609, https://doi.org/10.1016/0144-8609(88)90037-4.

28.Thomas B. Lawson, 1995, Fundamentals of Aquacultural Engineering, pp.272-288.

29.Thomas B.Lawson, 1995, Fundamentals of Aquaculture Engineering.

30.Tomoaki Itano, Taishi Inagaki, Choji Nakamura, Ren Hashimoto, Naohiro Negoro, Jinsuke Hyodo, Syuta Honda, 2019, Water circulation induced by mechanical aerators in a rectangular vessel for shrimp aquaculture, Aquacultural Engineering, Volume 85, Pages 106-113, ISSN 0144-8609, https://doi.org/10.1016/j.aquaeng.2019.03.006.

31.Wyban, J.A, Pruder, G.D., Leber, K.M., 1989, Paddlewheel effects on shrimp growth, production and crop value in commercial earthen ponds. J. World Aquac. Soc. 20, pp18– 23.

網路部分:

1.Marmara University,2020,土耳其,網址:
https://www.marmara.edu.tr/,上網日期:2020年04月。

2.太陽能居家魚菜共生系統–魚農夫養殖篇,2017,台灣,網址:http://www.villesmart.com/,上網日期:2020年04月。

3.河見電機工業股份有限公司,1979,新北市,網址:https://www.hcppump.com.tw/,上網日期:2020年05月

4.ProREXoil OÜ,2002,愛沙尼亞,網址:
https://www.prorexoil.ee/,上網日期:2020年05月

5.群冠企業有限公司,2020,高雄,網址:
http://www.omega3.com.tw/,上網日期:2020年05月

6.成奕精機有限公司,2020,高雄,網址:
http://www.chenta.com/,上網日期:2020年05月。

7.天元國際股份有限公司,2020,台南,網址:
http://www.aquaculture-product.com/,上網日期:2020年05月。

8.佛羅里達大學,2020,美國,網址:
http://plants.ifas.ufl.edu/manage/overview-of-florida-waters/water-quality/dissolved-oxygen/,上網日期:2020年5月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊