跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張思維
研究生(外文):Ssu-Wei Chang
論文名稱:阿根廷魷魚之食性分析與人造物攝入
論文名稱(外文):Feeding habits of the Argentine short-finned squid Illex argentinus, including artifact ingestion
指導教授:柯佳吟柯佳吟引用關係
指導教授(外文):Chia-Ying Ko
口試委員:丘臺生戴昌鳳陳志炘
口試委員(外文):Tai-Sheng ChiuChang-Feng DaiChih-Shin Chen
口試日期:2020-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:59
中文關鍵詞:頭足類魷魚阿根廷魷食性氣候變遷人造物汙染
外文關鍵詞:CephalopodSquidIllex argentinusDietClimate changeArtifact pollution
DOI:10.6342/NTU202002611
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
頭足類(Cephalopods)在生態學與漁業皆扮演重要角色,為全球重要漁獲資源之一,年產量約占總漁獲量的4%。頭足類中的魷類(Squids)具有多樣化的食性以及豐富的族群量,在食物網中做為高級消費者提供不同營養階層間高度交互作用及能量流動。過去研究已顯示在氣候變遷衝擊下,魷類的主要食物來源如磷蝦也因海冰溶化導致棲地改變而降低生物量。然而,對於快速生長過程中須攝食大量食物的魷類而言,目前尚未有研究探討魷類是否會因上述原因影響其食性,以及近年的海洋塑膠汙染對其攝食的影響。在本研究中,利用2018及2019年2月到4月在西南大西洋所採集之300尾阿根廷魷(Illex argentinus),解剖個體胃內容物,進行食性分析與人造物檢測。由食性分析結果顯示,在2018年有97.60%的阿根廷魷個體胃內容物中含有甲殼類、14.90%含有魚類以及2.40%含有頭足類;在2019年有96.23%的阿根廷魷魚個體胃內容物中含有甲殼類、18.87%含有魚類以及20.75%含有頭足類,可以發現阿根廷魷魚在2019年攝食頭足類的比例明顯較高,攝食甲殼類的比例明顯較低。由人造物檢測結果顯示,阿根廷魷魚個體的人造物攝取比例在2018年為17.92%、在2019年為28.33%,但阿根廷魷個體平均攝取人造物數皆小於0.5個,並且由FTIR分析結果顯示大部分人造物並非塑膠但可能為似衣料纖維的聚醣材質。整體而言,阿根廷魷魚的食性雖因年度有部分差異,但攝食內容整體比例仍與前人研究相近,顯示其食性應未隨氣候變遷改變,而人造物檢測結果也顯示西南大西洋海域僅輕微污染,可提供國民對於此類食品安全的參考。
Cephalopods play an important role in ecology and fishery. The variation in the diet of large squid population promote high interaction of individuals between different trophic levels in the marine ecosystem. As a consequence of global climate change, previous research has indicated that alteration of environment impacts the availability of the prey. Due to marine pollution, the squids are under the risk of artifact ingestion. However, no clear understanding about the effect of climate change and marine pollution on squid diet selection. This study examined 300 stomachs from Illex argentinus. The sample were collected through commercial catches across the Southwest Atlantic from February to April of 2018 and 2019. In the result, the percentage of frequency of occurrence (FO%) of squid diet in 2018 comprised of 14.90% fish, 2.40% cephalopod and 97.60% crustacean taken from 208 stomachs. Meanwhile, a relatively higher FO% for squid diet in 2019 was observed comprising of 18.87% fish, 20.75% cephalopod and 96.23% crustacean examined from 53 stomachs. Also, the Fourier-Transform Infrared Spectroscopy (FTIR) showed that artifacts examined were composed of plastic and non-plastic materials. Subsequently, FO% of artifact ingestion was higher in 2019 (28.33%) than in 2018 (17.92%), thus mean number of artifact ingestion from two years were less than 0.5. The results indicate that the main diet of Illex argentinus is crustacean. Also, climate change has no direct impact to the squid diet. The results of artifact detection showed that the Southwest Atlantic is less polluted. Thus, it is suggested to continue a monitoring study of squids in this area, particularly on food safety and diet to well manage the biodiversity and squid biology.
口試委員會審定書 1
致謝 2
中文摘要 3
ABSTRACT 4
CONTENTS 5
LIST OF FIGURES 7
LIST OF TABLES 9
Chapter 1 Introduction 10
1.1 The impact of climate and environmental changes 10
1.2 Ecological characteristics of squids 10
1.3 Diets of Illex argentinus 11
1.4 Recent concerns of marine artifact pollution 12
1.5 Objectives 13
Chapter 2 Materials and Methods 14
2.1 Study area and stomach sampling 14
2.2 Stomach content analysis 14
2.2.1 Diet analysis 14
2.2.2 Artifact detection 16
2.3 Environmental data 17
2.4 Statistical analysis 17
Chapter 3 Results 19
3.1 Sample description 19
3.2 Diet analysis 20
3.2.1 Stomach fullness 20
3.2.2 Diet composition 20
3.2.3 The relationship between diet and individual size 21
3.3 Artifact detection 22
3.3.1 Artifact classification 22
3.3.2 Stomach fullness and diet of artifact consuming individuals 23
3.3.3 Artifact composition 23
3.3.4 The relationship between artifact ingestion and individual size 24
Chapter 4 Discussion 25
4.1 Diet analysis 25
4.2 Artifact detection 27
4.3 Conclusion 28
References 30
Figures 38
Tables 54
Abidli, S., Lahbib, Y., El Menif, N. T. (2019). Microplastics in commercial molluscs from the lagoon of Bizerte (Northern Tunisia). Marine Pollution Bulletin, 142, 243-252.

Acuner, E., Dilek, F. (2004). Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochemistry, 39(5), 623-631.

Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S., Geissler, P. (2012). Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Research Part II: Topical Studies in Oceanography, 59, 147-158.

Atkinson, A., Hill, S. L., Pakhomov, E. A., Siegel, V., Reiss, C. S., Loeb, V. J., Steinberg, D. K., Schmidt, K., Tarling, G. A., Gerrish, L. (2019). Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change, 9(2), 142-147.

Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Pauletto, M., Bargelloni, L., Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198, 211-222.

Baalkhuyur, F. M., Dohaish, E.-J. A. B., Elhalwagy, M. E., Alikunhi, N. M., AlSuwailem, A. M., Røstad, A., Coker, D. J., Berumen, M. L., Duarte, C. M. (2018). Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast. Marine Pollution Bulletin, 131, 407-415.

Bessa, F., Ratcliffe, N., Otero, V., Sobral, P., Marques, J. C., Waluda, C. M., Trathan, P. N., Xavier, J. C. (2019). Microplastics in gentoo penguins from the Antarctic region. Scientific Reports, 9(1), 1-7.

Bidder, A. M. (1950). The digestive mechanism of the European squids Loligo vulgaris, Loligo forbesii, Alloteuthis media and Alloteutihis subulata. Journal of Cell Science, 3(13), 1-43.

Bidder, A. M. (1966). Feeding and digestion in cephalopods. The Mollusca: Physiology, Part 2, 5, 149.

Boschi, E. E., Fischbach, C. E., Iorio, M. I. (1992). Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina.

Breiby, A. (1985). Predatory role of the flying squid (Todarodes sagittatus) in north Norwegian waters. NAFO Sci. Coun. Studies, 9, 125-132.

Caddy, J., Rodhouse, P. (1998). Cephalopod and groundfish landings: evidence for ecological change in global fisheries? Reviews in Fish Biology and Fisheries, 8(4), 431-444.

Chapman, J. W. (2007). Amphipoda: chapter 39 of the light and smith manual: intertidal invertebrates from Central California to Oregon. Completely Revised and Expanded.

Clarke, M. R. (1986). A handbook for the identification of cephalopod beaks. Clarendon Press, Oxford.

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Galloway, T. S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science Technology, 49(2), 1130-1137.

Collins, M. A., Rodhouse, P. G. (2006). Southern ocean cephalopods. Advances in Marine Biology, 50, 191-265.

Cury, P., Bakun, A., Crawford, R. J., Jarre, A., Quinones, R. A., Shannon, L. J., Verheye, H. M. (2000). Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES Journal of Marine Science, 57(3), 603-618.

Dehaut, A., Cassone, A.-L., Frère, L., Hermabessiere, L., Himber, C., Rinnert, E., Rivière, G., Lambert, C., Soudant, P., Huvet, A. (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution, 215, 223-233.

Doubleday, Z. A., Prowse, T. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W. (2016). Global proliferation of cephalopods. Current Biology, 26(10), R406-R407.

FAO. (2019). FAO yearbook. Fishery and Aquaculture Statistics 2017/FAO annuaire. Statistiques des pêches et de l’aquaculture 2017/ FAO anuario. Estadísticas de pesca y acuicultura 2017. Rome/Roma.

Foekema, E. M., De Gruijter, C., Mergia, M. T., van Franeker, J. A., Murk, A. J., Koelmans, A. A. (2013). Plastic in north sea fish. Environmental Science Technology, 47(15), 8818-8824.

Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C., Wanless, S. (2006). From plankton to top predators: bottom‐up control of a marine food web across four trophic levels. Journal of Animal Ecology, 75(6), 1259-1268.

Golikov, A. V., Sabirov, R. M., Lubin, P. A., Jørgensen, L. L., Beck, I.-M. (2014). The northernmost record of Sepietta oweniana (Cephalopoda: Sepiolidae) and comments on boreo-subtropical cephalopod species occurrence in the Arctic. Marine Biodiversity Records, 7.

Green, S. J., Côté, I. M. (2014). Trait‐based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities. Journal of Animal Ecology, 83(6), 1451-1460.

Haimovici, M., Brunetti, N. E., Rodhouse, P. G., Csirke, J., Leta, R. H. (1998). Illex argentinus. FAO Fisheries Technical Paper, 27-58.

Hays, G. C., Richardson, A. J., Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology Evolution, 20(6), 337-344.

Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. G., Jonsen, I. D., Shaffer, S. A., Dunne, J. P., Costa, D. P., Crowder, L. B. (2013). Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change, 3(3), 234-238.

Hazen, E. L., Abrahms, B., Brodie, S., Carroll, G., Jacox, M. G., Savoca, M. S., Scales, K. L., Sydeman, W. J., Bograd, S. J. (2019). Marine top predators as climate and ecosystem sentinels. Frontiers in Ecology the Environment, 17(10), 565-574.

Hoving, H. J. T., Gilly, W. F., Markaida, U., Benoit‐Bird, K. J., ‐Brown, Z. W., Daniel, P., Field, J. C., Parassenti, L., Liu, B., Campos, B. (2013). Extreme plasticity in life‐history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Global Change Biology, 19(7), 2089-2103.

Ibánez, C. M., Keyl, F. (2010). Cannibalism in cephalopods. Reviews in Fish Biology and Fisheries, 20(1), 123-136.

Ivanovic, M. L., Brunetti, N. E. (1994). Food and feeding of Illex argentinus. Antarctic Science, 6(2), 185-193.

Jackson, G. D., Buxton, N. G., George, M. J. (2000). Diet of the southern opah Lampris immaculatus on the Patagonian Shelf; the significance of the squid Moroteuthis ingens and anthropogenic plastic. Marine Ecology Progress Series, 206, 261-271.

Jamieson, A., Brooks, L., Reid, W., Piertney, S., Narayanaswamy, B., Linley, T. (2019). Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. Royal Society Open Science, 6(2), 180667.

Jansen, E., Overpeck, J., Briffa, K., Duplessy, J., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W., Rahmstorf, S. (2007). Paleoclimate. Climate change : the physical science basis contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

Jones-Williams, K., Galloway, T., Cole, M., Stowasser, G., Waluda, C., Manno, C. (2020). Close encounters-microplastic availability to pelagic amphipods in sub-antarctic and antarctic surface waters. Environment International, 140, 105792.

Kaplan, M. B., Mooney, T. A., McCorkle, D. C., Cohen, A. L. (2013). Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS One, 8(5).

Khan, S., Malik, A. (2014). Environmental and health effects of textile industry wastewater. In Environmental deterioration and human health (pp. 55-71): Springer.

Klages, N. T. (1996). Cephalopods as prey. II. Seals. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1343), 1045-1052.

Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T., Watters, G. M. (2018). Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS One, 13(1), e0191011.

Kühn, S., Van Werven, B., Van Oyen, A., Meijboom, A., Rebolledo, E. L. B., Van Franeker, J. A. (2017). The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Marine Pollution Bulletin, 115(1-2), 86-90.

Legendre, L., Rassoulzadegan, F. (1995). Plankton and nutrient dynamics in marine waters. Ophelia, 41(1), 153-172.

Lipiński, M., Underhill, L. (1995). Sexual maturation in squid: quantum or continuum? South African Journal of Marine Science, 15(1), 207-223.

Lombarte, A., Chic, Ò., Parisi-Baradad, V., Olivella, R., Piera, J., García-Ladona, E. (2006). A web-based environment for shape analysis of fish otoliths. The AFORO database. Scientia Marina, 70(1), 147-152.

Lusher, A., Welden, N., Sobral, P., Cole, M. (2017). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods, 9(9), 1346-1360.

Markaida, U., Gilly, W. F., Salinas-Zavala, C. A., Rosas-Luis, R., Booth, J. A. T. (2008). Food and feeding of jumbo squid Dosidicus gigas in the central Gulf of California during 2005-2007. CalCOFI Rep, 49, 90-103.

Markaida, U., Sosa-Nishizaki, O. (2003). Food and feeding habits of jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) from the Gulf of California, Mexico. Journal of the Marine Biological Association of the United Kingdom, 83(3), 507-522.

Mouat, B., Collins, M. A., Pompert, J. (2001). Patterns in the diet of Illex argentinus (Cephalopoda: Ommastrephidae) from the Falkland Islands jigging fishery. Fisheries Research, 52(1-2), 41-49.

Murphy, E., Watkins, J., Trathan, P., Reid, K., Meredith, M., Thorpe, S., Johnston, N., Clarke, A., Tarling, G., Collins, M. (2007). Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1477), 113-148.

Piatkowski, U., Pierce, G. J., da Cunha, M. M. (2001). Impact of cephalopods in the food chain and their interaction with the environment. Fisheries Research, 52(1-2), 1-142.

PlasticsEurope. (2018). Annual review 2017–2018. In: PlasticsEurope AISBL Brussels.

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919-925.

Portner, E. J., Markaida, U., Robinson, C. J., Gilly, W. F. (2019). Trophic ecology of Humboldt squid, Dosidicus gigas, in conjunction with body size and climatic variability in the Gulf of California, Mexico. Limnology Oceanography.

Rodhouse, P. G., Hatfield, E. M. C. (1990). Dynamics of growth and maturation in the cephalopod Illex argentinus de Castellanos, 1960 (Teuthoidea: Ommastrephidae). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 329(1254), 229-241.

Rodhouse, P. G., Nigmatullin, C. M. (1996). Role as consumers. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1343), 1003-1022.

Rodhouse, P. G. (2013). Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep Sea Research Part II: Topical Studies in Oceanography, 95, 129-138. doi:https://doi.org/10.1016/j.dsr2.2012.07.001

Rosas-Luis, R., Sánchez, P., Portela, J. M., Del Rio, J. L. (2014). Feeding habits and trophic interactions of Doryteuthis gahi, Illex argentinus and Onykia ingens in the marine ecosystem off the Patagonian Shelf. Fisheries Research, 152, 37-44.

Rosas-Luis, R. (2016). Description of plastic remains found in the stomach contents of the jumbo squid Dosidicus gigas landed in Ecuador during 2014. Marine Pollution Bulletin, 113(1-2), 302-305.

Santos, R. A., Haimovici, M. (1997). Food and feeding of the short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil. Fisheries Research, 33(1-3), 139-147.

Scharf, F. S., Juanes, F., Rountree, R. A. (2000). Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Marine Ecology Progress Series, 208, 229-248.

Smale, M. (1996). Cephalopods as prey. IV. Fishes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1343), 1067-1081.

Van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., Van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., Law, K. L. (2015). A global inventory of small floating plastic debris. Environmental Research Letters, 10(12), 124006.

Waluda, C., Pierce, G. J. (1998). Temporal and spatial patterns in the distribution of squid Loligo spp. in United Kingdom waters. African Journal of Marine Science, 20.

West, J. A., Sivak, J. G., Doughty, M. J. (1995). Microscopical evaluation of the crystalline lens of the squid (Loligo opalescens) during embryonic development. Experimental Eye Research, 60(1), 19-35.

White, T. (2008). The role of food, weather and climate in limiting the abundance of animals. Biological Reviews, 83(3), 227-248.

Xavier, J. C., Cherel, Y. (2009). Cephalopod beak guide for the Southern Ocean: Jose Xavier.

Zeidberg, L. D., Robison, B. H. (2007). Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proceedings of the National Academy of Sciences, 104(31), 12948-12950.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top