跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:879a:e16d:38fe:36d8) 您好!臺灣時間:2024/12/13 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃泰群
研究生(外文):Tai-Chun Huang
論文名稱:不同光譜之發光二極體(LED)對白棘三列海膽腸道微生物之影響
論文名稱(外文):Effects of different light emitting diodes spectral on sea urchin (Tripneustes gratilla) gut microbiota
指導教授:王永松
指導教授(外文):Yung-Song Wang
口試委員:曾登裕楊姍樺
口試委員(外文):Deng-Yu TsengShan-Hua Yang
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:52
中文關鍵詞:發光二極體白棘三列海膽腸道菌相次世代定序
外文關鍵詞:light-emitting diodesTripneustes gratillagut microbiotanext generation sequencing
DOI:10.6342/NTU202003804
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來白棘三列海膽因大量捕撈導致捕撈量逐年下,須利用養殖的手段提高產量,目前仍無研究探討其適合生長的光波長環境,且不同光環境對其腸道菌相的影響仍然未知。本次實驗首先利用不同波長 (白光:全光譜、紅光: 630 nm、藍光:450 nm)發光二極體 (LED)燈具來確認海膽養殖水體在不同波長光環境下含菌量的變化,以光照週期12小時光亮及12小時黑暗 (12L:12D)的條件持續照射7週後,630 nm組海膽的存活率最高且水體含菌量顯著大於全光譜組及450 nm組,再以次世代定序的方式將照射不同波長LED一週後的海膽腸道細菌透過16S rRNA上的V3-V4高度變異區進行總基因體分析,樣本內多樣性分析的結果顯示海膽照射630 nm的光線後腸道細菌的總物種量最多且演化上的分歧最少,照射450 nm後的海膽腸道細菌總物種量最少且演化上的分歧最高,再透過樣本間多樣性分析確認全光譜組與630 nm組的腸道菌相組成相近,而450 nm組的腸道菌相組成與其他組差異最大,最後透過不同波長LED照射的方式從飼養水體中篩選並分離出兩株對不同波長LED有不同生長反應的細菌Vibrio mediterranei與Vibrio hangzhouensis,且Vibrio mediterranei對不同光波長的反應在海膽腸道內也有同樣的趨勢。綜合上述結果顯示,以波長630 nm的LED飼養之海膽其環境水體與腸道內的細菌最豐富且穩定,此時海膽存活率最高;以波長450 nm的LED飼養之海膽其環境水體與腸道內的細菌最少且菌相改變劇烈,海膽存活率較低;全光譜飼養之海膽其水體含菌量介於上述兩組之間,腸道內菌相與630 nm組最相似,但由於此組內其中一優勢菌種Vibrio fortis為已知海膽病原菌,導致存活率較低。本次實驗證實630 nm的光環境最適合白棘三列海膽的養殖,能促進飼養水體及海膽腸道內菌相穩定有助於海膽存活。
In recent years, sea urchin Tripneustes gratilla has decreasing fishing amount due to over harvesting, aquaculture of T. gratilla seems to be a solution to support the insufficient production, but the effect of different light condition in T. gratilla rearing have not been well studied. In the current study, we analyzed the total bacteria number of three T. gratilla breeding tanks’ water under different light-emitting diodes (LED) (full spectrum, 630 nm, 450 nm) for seven weeks, group 630 nm has 3.4 x 104 colony forming unit per milliliter (cfu/ml), significantly higher than full spectrum group 0.9 x 104 cfu/ml and 450 nm group 0.4 x 104 cfu/ml, and the survival rate of group 630 nm is higher than full spectrum group and group 450 nm. To characterize the composition of T. gratilla gut microbiota under different wavelength of light, we analyzed the metagenomics of sea urchin gut by using 16S rRNA next generation sequencing (NGS) targeting the V3-V4 region. A total of 2,206 individual bacterial operational taxonomic unit (OTU) were identified, belonging to 121 family-, 205 genus- and 249 species level OTU group. Alpha diversity analyses based on observed species, phylogenetic diversity whole tree, Chao1 and Shannon indices, showed that the microbiota of sea urchin gut is more stable under 630 nm group. Beta diversity analyses (Principle coordinate analysis, PCoA) showed the 630 nm group and full spectrum group have the shortest Unifrac distance, suggest the similarity of these two groups. Using different light condition we separated two bacteria Vibrio mediterranei and Vibrio hangzhouensis, which have different growth rate under blue light and red light. These results have proved that the 630 nm LED is effective to T. gratilla aquaculture by stabilizing the microbiota of water and sea urchin gut.
目錄
謝辭 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章、 前言 1
1.1 海膽與其養殖產業 1
1.2 發光二極體 (Light emitting diodes, LEDs)對水生生物之影響 2
1.3 腸道微生物 3
1.4 生物膜 4
1.5 消化道細菌多樣性研究 5
1.6 研究動機與實驗設計 6
第二章、 材料與方法 7
2.1 實驗動物處理與採樣 7
2.2 總菌數檢測 8
2.3 生物膜形成能力檢測 8
2.4 光敏感性細菌鑑定 9
2.5 海膽腸道細菌次世代定序 10
2.6 生物資訊分析 11
2.7 統計分析 12
第三章、 實驗結果 13
3.1 不同光波長影響海膽的生長情形 13
3.2 不同光波長造成海膽飼養水體總菌量與生物膜形成差異 13
3.3 不同光波長短期照射對海膽環境中與腸道內菌量的影響 14
3.4 光敏感性細菌的篩選 15
3.5 不同光波長影響海膽腸道內菌相:次世代定序結果 15
3.6 海膽腸道細菌樣本內多樣性分析 (α-diversity) 17
3.7 海膽腸道細菌樣本間多樣性分析 (β-diversity) 18
第四章、 討論 19
4.1 不同光波長對海膽生長的影響 20
4.2 不同光波長對養殖水體菌量的影響 20
4.3 不同光波長影響海膽腸道內菌相 22
第五章、 結論 25
參考文獻 26
附錄 33
李坤瑄. (2001). 台灣常見的海膽簡介. 環境資訊中心.
李坤瑄, & 陳章波. (1994). 台灣常見的棘皮動物. 國立海洋生物博物館.
李鎮文. (2010). 飼養密度與飼料種類在兩種養殖系統中對紫海膽與白棘三列海膽成長、活存與生殖腺的影響. 國立臺灣海洋大學水產養殖學系碩士論文.
張秉宏. (2003). 馬糞海膽 (TripneustesgratillaLinnaeus)繁養殖技術之開發. 國立屏東科技大學水產養殖系碩士論文.
陳忠佑. (2004). 飼料中綠藻粉及三種純化類胡蘿蔔素對白棘三列海膽生殖腺品質及成長的影響. 國立臺灣海洋大學水產養殖學系碩士論文.
黃琦妮. (2003). 飼料中不同蛋白質來源及含量對白棘三列海膽成長的影響. 國立臺灣海洋大學水產養殖學系碩士論文.
Alonso-Saez, L., Zeder, M., Harding, T., Pernthaler, J., Lovejoy, C., Bertilsson, S., & Pedros-Alio, C. (2014). Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front. Microbiol., 5, 425.
Andree, K. B., Carrasco, N., Carella, F., Furones, D., & Prado, P. (2020). Vibrio mediterranei, a Potential Emerging Pathogen of Marine Fauna: Investigation of pathogenicity using a bacterial challenge in Pinna nobilis and development of a species-specific PCR. J. Appl. Microbiol.
Artigas, Q. G., Lapebie, P., Leclere, L., Takeda, N., Deguchi, R., Jekely, G., Momose, T., Houliston, E. (2018). A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. Elife, 7.
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915-1920.
Baquero, F., & Nombela, C. (2012). The microbiome as a human organ. Clin. Microbiol. Infect., 18 Suppl 4, 2-4.
Barker, M. F. (1998). Feeding rate, absorption efficiencies, growth, and enhancement of gonad production in the New Zealand sea urchin Evechinus chloroticus Valenciennes (Echinoidea : Echinometridae) fed prepared and natural diets. J. Shellfish Res., 17, 1583-1590.
Becker, P. (2009). First insights into the gut microflora associated within an echinoid from wood falls environments. Cah. Biol. Mar., 50, 343-352.
Becker, P., Gillan, D. C., & Eeckhaut, I. (2007). Microbiological study of the body wall lesions of the echinoid Tripneustes gratilla. Dis. Aquat. Organ., 77(1), 73-82.
Bicknell, B., Liebert, A., Johnstone, D., & Kiat, H. (2019). Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med. Sci., 34(2), 317-327.
Brink, M., Rhode, C., Macey, B. M., Christison, K. W., & Roodt-Wilding, R. (2019). Metagenomic assessment of body surface bacterial communities of the sea urchin, Tripneustes gratilla. Mar. Genomics, 47, 100675.
Carrier, T. J., & Reitzel, A. M. (2017). The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Front. Microbiol., 8, 802.
Castilla-Gavilán, M., Reznicov, M., Turpin, V., Decottignies, P., & Cognie, B. (2020). Sea urchin recruitment: Effect of diatom based biofilms on Paracentrotus lividus competent larvae. Aquaculture, 515.
Cellario, C., & Fenaux, L. (1990). Paracentrotus lividus (Lamarck) in culture (larval and benthic phases): parameters of growth observed during two years following metamorphosis. Aquaculture, 84, 173-188.
Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. Statist., 11, 265/270.
Chen, B., Huang, J., Li, H., Zeng, Q.-H., Wang, J. J., Liu, H., Pan, Y., Zhao, Y. (2020). Eradication of planktonic Vivrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control, 113.
Chen, C. P. (1989). Reproductive biology of echinoderms in Taiwan. Acta Oceanographica Taiwanica, 24, 133-138.
Chen, Y. L., Lee, C. C., Lin, Y. L., Yin, K. M., Ho, C. L., & Liu, T. (2015). Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinform., 16 Suppl 18, S13.
Cherrington, C. A. (1991). Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J. Appl. Microbiol., 70, 161-165.
Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318-1322.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72(7), 5069-5072.
Ding, J., Dou, Y., Wang, Y., & Chang, Y. (2014). Draft Genome Sequence of Vibrio fortis Dalian14 Isolated from Diseased Sea Urchin (Strongylocentrotus intermedius). Genome Announc., 2(4).
Du, Y., Gao, X. R., Peng, L., & Ge, J. F. (2020). Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6(6), e04097.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194-2200.
Enwemeka, C. S. (2013). Antimicrobial blue light: an emerging alternative to antibiotics. Photomed. Laser Surg., 31(11), 509-511.
Faith, D. P., & Baker, A. M. (2006). Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol. Bioinform., 2, 121-128.
Fry, J. (2000). Bacterial diversity and 'unculturables'. Curr. Microbiol., 27, 186-188.
Gilles, K. W., & Pearse, J. S. (1985). Disease in sea urchin Strongylocentrotus purpuratus: experimental infection and bacterial virulence. Dis. Aquat. Organ., 1, 105-114.
Gomez-Consarnau, L., Gonzalez, J. M., Coll-Llado, M., Gourdon, P., Pascher, T., Neutze, R., Pedros-Alio, C., Pinhassi, J. (2007). Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature, 445(7124), 210-213.
Gray, M. W., Sankoff, D., & Cedegren, R. J. (1984). On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res., 12, 5837-5852.
Hagen, N. T. (1996). Echinoculture: from fishery enhancement to closed cycle cultivation. World aquaculture, 27, 6-19.
Hakim, J. A., Koo, H., Kumar, R., Lefkowitz, E. J., Morrow, C. D., Powell, M. L., Watts, S. A., Bej, A. K. (2016). The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles. FEMS Microbiol. Ecol., 92(9).
Hakim, J. A., Schram, J. B., Galloway, A. W. E., Morrow, C. D., Crowley, M. R., Watts, S. A., & Bej, A. K. (2019). The Purple Sea Urchin Strongylocentrotus purpuratus Demonstrates a Compartmentalization of Gut Bacterial Microbiota, Predictive Functional Attributes, and Taxonomic Co-Occurrence. Microorganisms, 7(2).
Hernandez-Prieto, M. A., Li, Y., Postier, B. L., Blankenship, R. E., & Chen, M. (2018). Far-red light promotes biofilm formation in the cyanobacterium Acaryochloris marina. Environ. Microbiol., 20(2), 535-545.
Hu, J., Lin, S., Tan, B. K., Hamzah, S. S., Lin, Y., Kong, Z., Zhang, Y., Zheng, B., Zeng, S. (2018). Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res. Int., 111, 265-271.
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol., 45(9), 2761-2764.
Johnson, B. M., Gaudreau, M. C., Gudi, R., Brown, R., Gilkeson, G., & Vasu, C. (2020). Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. J. Autoimmun., 108, 102420.
Kamada, N., Chen, G. Y., Inohara, N., & Nunez, G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 14(7), 685-690.
Kasagi, S., Mizusawa, K., & Takahashi, A. (2020). The effects of chromatic lights on body color and gene expressions of melanin-concentrating hormone and proopiomelanocortin in goldfish (Carassius auratus). Gen. Comp. Endocrinol., 285, 113266.
Kim, H.-J., Yang, T., Choi, S., Wang, Y.-J., Lin, M.-Y., & Liceaga, A. M. (2020). Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Sci Hortic, 261.
Lasker, R., & Giese, A. C. (1954). Nutrition of the sea urchin, Strongylocentrotus purpuratus. Biological Bulletin, 106, 328-340.
Lawley, T. D., Clare, S., Walker, A. W., Goulding, D., Stabler, R. A., Croucher, N., Mastroeni, P., Scott, P., Raisen, C., Mottram, L., Fairweather, N. F., Wren, B. W., Parkhill, J., Dougan, G. (2009). Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun., 77(9), 3661-3669.
Lawrence, J. M., & Agatsuma, Y. (2013). Tripneustes. In Sea Urchins: Biology and Ecology (pp. 491-507).
Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., & Caldwell, D. E. (1991). Optical sectioning of microbial biofilms. J. Bacteriol., 173(20), 6558-6567.
Lesser, M. P., Carleton, K. L., Bottger, S. A., Barry, T. M., & Walker, C. W. (2011). Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proc. Biol. Sci., 278(1723), 3371-3379.
Li, X., Zheng, Z., Pan, J., Jiang, D., Tian, Y., Fang, L., & Huang, Y. (2020a). Impacts of colored light-emitting diode illumination on the growth performance and fecal microbiota in goose. Poult. Sci., 99(4), 1805-1812.
Li, Y., Li, L., Liu, J., & Qin, R. (2020b). Light absorption and growth response of Dunaliella under different light qualities. J. Appl. Phycol., 32, 1041-1052.
Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr., 3(3).
Liu, Q. (2019). Complete genome sequence of Vibrio mediterranei 117-T6, a potentially pathogenic bacterium isolated from the Conchocelis of Pyropia spp. ASM Journals, 5, 38.
Maes, P., & Janqoux, M. (1984). The bald-sea-urchin disease: a biopathological approach. Helgolander Meeresun, 37, 217-224.
Makarieva, T., Shubina, L., Kurilenko, V., Isaeva, M., Chernysheva, N., Popov, R., Bystritskaya, E., Dmitrenok, P., Stonik, A. V. (2019). Marine Bacterium Vibrio sp. CB1-14 Produces Guanidine Alkaloid 6-epi-Monanchorin, Previously Isolated from Marine Polychaete and Sponges. Mar. Drugs, 17(4).
Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387-402.
Marteyn, B., West, N. P., Browning, D. F., Cole, J. A., Shaw, J. G., Palm, F., Mounier, J., Prevost, M. C., Sansonetti, P., Tang, C. M. (2010). Modulation of Shigella virulence in response to available oxygen in vivo. Nature, 465(7296), 355-358.
Migaud, H., Cowan, M., Taylar, J., & Ferguson, H. W. (2007). The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture, 270, 390-404.
Millott, N., & Yoshida, M. (1958). The photosensitivity of the sea urchin Diadema Antillarum philippi: responses to increases in light intensity. Journal of Zoology, 133, 67-71.
Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., Cresci, A., Silvi, S., Orpianesi, C., Verdenelli, M. C., Clavel, T., Koebnick, C., Zunft, H. J., Dore, J., Blaut, M. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol., 72(2), 1027-1033.
Osawa, N. (1964). Infection of germfree mice with Shigella flexneri 3a. Jpn. j. exp. med., 34, 77-80.
Pacheco, A. R., Curtis, M. M., Ritchie, J. M., Munera, D., Waldor, M. K., Moreira, C. G., & Sperandio, V. (2012). Fucose sensing regulates bacterial intestinal colonization. Nature, 492(7427), 113-117.
Penders, J., Thijs, C., Vink, C., Stelma, F. F., Snijders, B., Kummeling, I., van den Brandt, P. A., Stobberingh, E. E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 118(2), 511-521.
Prado, P., Carrasco, N., Catanese, G., Grau, A., Cabanes, P., Carella, F., Garcia-March, J. R., Tena, J., Roque, A., Bertomeu, E., Gras, N., Caiola, N., Furones, M. D., Andree, K. B. (2020). Presence of Vibrio mediterranei associated to major mortality in stabled individuals of Pinna nobilis L. Aquaculture, 519.
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol., 35(9), 833-844.
Robert, B., Codd, C., Hebbert, D., Vink, S., & J., B. (1984). The functional significance of the relative size of Aristotle's lantern in the sea urchin Echinometramathaei (de Blainville). J. Exp. Mar. Biol. Ecol., 77, 81-97.
Rupnik, M., Wilcox, M. H., & Gerding, D. N. (2009). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol., 7(7), 526-536.
Sakyi, M. E., Cai, J., Tang, J., Abarike, E. D., Xia, L., Li, P., Kuebutornye, F. K. A., Zou, Z., Liang, Z., Jian, J. (2020). Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia, Oreochromis niloticus. Aquac. Rep., 17.
Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74, 5463-5467.
Schamberger, G. P., & Gonzalez, F. D. (2002). Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Eschericia coli O157:H7. J. Food Prot., 65, 1381-1387.
Schillaci, D., Cusimano, M. G., Spinello, A., Barone, G., Russo, D., Vitale, M., Parrinello, D., Arizza, N. (2014). Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB Express, 4.
Shahi, S. K., Freedman, S. N., & Mangalam, A. K. (2017). Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes, 8(6), 607-615.
Shpigel, M., & Erez, J. (2020). Effect of diets and light regimes on calcification and somatic growth of the sea urchin Tripneustes gratilla elatensis. Aquaculture, 529.
Spinello, A., Cusimano, M. G., Schillaci, D., Inguglia, L., Barone, G., & Arizza, V. (2018). Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of beta-Thymosin of Sea Urchin Paracentrotus lividus. Mar. Drugs, 16(10).
Stewart, E. J. (2012). Growing unculturable bacteria. J. Bacteriol., 194(16), 4151-4160.
Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276), 135-138.
Suau, A. (1999). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human hut. Appl. Environ. Microbiol., 65, 4799-4807.
Sun, J., Chi, X., Yang, M., Ding, J., Shi, D., Yu, Y., Chang, Y., Zhao, C. (2019). Light intensity regulates phototaxis, foraging and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ, 7, e8001.
Unuma, T., Murata, Y., Hasegawa, N., Sawaguchi, S., & Takahashi, K. (2015). Improving the food quality of sea urchins collected from barren grounds by short-term aquaculture under controlled temperature. Bull. Fish. Res. Agen., 40, 145-153.
Vaughan, E. E., Schut, F., Heilig, H. G. H. J., Zoetendal, E. G., Vos, W. M. d., & Akkermans, A. D. L. (2000). A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol., 1, 1-12.
Wang, Y., Wang, Y., Wang, Y., Murray, C. K., Hamblin, M. R., Hooper, D. C., & Dai, T. (2017). Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist. Updat., 33-35, 1-22.
Wang, Y. P., & Gu, J.-D. (2006). Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology, 15(6), 549-557.
Wu, L., Han, M., Song, Z., Xu, S., Li, J., Li, X., Wang, Y., Yue, X., Li, X. (2019). Effects of different light spectra on embryo development and the performance of newly hatched turbot (Scophthalmus maximus) larvae. Fish Shellfish Immunol., 90, 328-337.
Wu, L., Wang, Y., Han, M., Song, Z., Song, C., Xu, S., Li, J., Wang, Y., Li, X., Yue, X. (2020). Growth, stress and non-specific immune responses of turbot(Scophthalmus maximus) larvae exposed to different light spectra. Aquaculture, 520.
Yao, Q., Yu, K., Liang, J., Wang, Y., Hu, B., Huang, X., Chen, B., Qin, Z. (2019). The Composition, Diversity and Predictive Metabolic Profiles of Bacteria Associated With the Gut Digesta of Five Sea Urchins in Luhuitou Fringing Reef (Northern South China Sea). Front. Microbiol., 10, 1168.
Yilmaz, P., Yarza, P., Rapp, J. Z., & Glöckner, F. O. (2016). Expanding the World of Marine Bacterial and Archaeal Clades. Front. Microbiol., 6.
Zheng, J. L., Yuan, S. S., Li, W. Y., & Wu, C. W. (2016). Positive and negative innate immune responses in zebrafish under light emitting diodes conditions. Fish Shellfish Immunol., 56, 382-387.
Zhou, B. H., Jia, L. S., Wei, S. S., Ding, H. Y., Yang, J. Y., & Wang, H. W. (2020). Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cecum. Poult. Sci., 99(3), 1297-1305.
Ziegler, A., Mooi, R., Rolet, G., & De Ridder, C. (2010). Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol. Biol., 10, 313.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊