跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳遠介
研究生(外文):Yuan-Chieh Chen
論文名稱:穩態波茲曼方程在擴散反射邊界條件下解的存在性
論文名稱(外文):Existence of Solution for Stationary Boltzmann Equation with Diffuse Reflection Boundary Condition
指導教授:陳逸昆
指導教授(外文):I-Kun Chen
口試委員:夏俊雄陳俊全
口試委員(外文):Chun-Hsiung HsiaChiun-Chuan Chen
口試日期:2020-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:43
中文關鍵詞:波茲曼方程擴散反射邊界條件非恆溫邊界穩態問題線性化波茲曼方程
外文關鍵詞:Boltzmann EquationDiffuse Reflection Boundary ConditionNon-isothermal BoundarySteady ProblemLinearized Boltzmann Equation
DOI:10.6342/NTU202001493
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
波茲曼方程式在研究熱傳導與稀薄氣體的領域中有著重要的地位。本文探討
穩態波茲曼方程式在擴散反射邊界條件下解的存在性,並討論當邊界溫度不為定
值的情形。我們給出一個直接的方法去估計線性化波茲曼算子的核空間,並藉由
此證明了L 2 空間的解存在性與估計。我們也推廣了傳統的特徵線方法,討論了與
邊界多次碰撞的情形,並證明了L ∞ 空間的解存在性與估計。最後,我們證明了
當邊界的溫度與均衡溫度差距小的情形下,穩態波茲曼方程式在邊界非常溫的擴
散反射邊界條件下解的存在性。
In this thesis, we consider the steady Boltzmann equation with diffuse reflection
boundary condition. We study the case of hard potential and the non-isothermal
boundary. We prove the existence and the uniqueness of solution and their estimate
in both L 2 and L ∞ space.
In L 2 the Theorem, we provide a direct way to estimate the kernel of the
linearized Boltzmann operator. In the L ∞ Theorem, we introduce the stochastic
cycles and prove the estimate that is valid for both steady and dynamic cases. And
we provide a iteration scheme for the non-isothermal boundary temperature to prove
the existence result and the L ∞ estimate when the wall temperature do not oscillate
too much.
口 試 委 員 會 審 定 書 i
誌 謝 ii
中 文 摘 要 iii
Abstract 英 文 摘 要 iv
1 Introduction 1
2 Preliminaries 7
2.1 Notations and Background . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Some Basic Properties and Lemmas . . . . . . . . . . . . . . . . . . . 8
3 L 2 Estimate on Stationary Linearized Boltzmann Equation 10
3.1 Construction of Solution for Damping Transport Equation . . . . . . 10
3.2 Construction of Solution for the Equation with Cut-off Linearized
Boltzmann Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Key Estimate for L 2 Estimate . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Proof of the L 2 Estimate Theorem . . . . . . . . . . . . . . . . . . . 20
4 L ∞ Estimate on Stationary Linearized Boltzmann Equation 22
4.1 Estimate on Integration on Stochastic Cycles . . . . . . . . . . . . . . 23
4.2 Iteration Scheme for L ∞ Case . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Key Estimate for L ∞ Case . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Proof of the L ∞ Estimate Theorem . . . . . . . . . . . . . . . . . . . 33
5 Existence and L ∞ Estimate for Non-isothermal Boundary 38
5.1 Iteration for Non-isothermal Boundary . . . . . . . . . . . . . . . . . 38
5.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . 38
6 Conclusion 42
Reference 43
[1] L. Arkeryd and A. Nouri. l 1 solutions to the stationary boltzmann equation in
a slab. Annales de la Facult´ e des sciences de Toulouse : Math´ ematiques, Ser.
6, 9(3):375–413, 2000.
[2] C. Cercignani. The Boltzmann Equation and Its Applications. Applied Mathe-
matical Sciences. Springer New York, 2012.
[3] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute
Gases. Springer, 2014.
[4] R. Duan, F. Huang, Y. Wang, and Z. Zhang. Effects of soft interaction and
non-isothermal boundary upon long-time dynamics of rarefied gas. Archive for
Rational Mechanics and Analysis, 234(2):925–1006, Nov 2019.
[5] R. Esposito, Y. Guo, C.-G. Kim, and R. Marra. Non-isothermal boundary
in the boltzmann theory and fourier law. Communications in Mathematical
Physics, 323:177–239, 2013.
[6] R. Esposito, J. L. Lebowitz, and R. Marra. Hydrodynamic limit of the station-
ary boltzmann equation in a slab. Commun. Math. Phys., 160, 1994.
[7] R. Esposito, J. L. Lebowitz, and R. Marra. The navier-stokes limit of stationary
solutions of the nonlinear boltzmann equation. J. Stat. Phys., 78, 1995.
[8] L. Evans. Partial Differential Equations. Graduate studies in mathematics.
American Mathematical Society, 2010.
[9] J. P. Guiraud. Probleme aux limites int´ erieur pour l’´ equation de boltzmann
lin´ eaire. J. de M´ ec., 9, 1970.
[10] J. P. Guiraud. Probleme aux limites int´ erieur pour l’´ equation de boltzmann en
r´ egime stationnaire, faiblement non lin´ eaire. J. de M´ ec., 11, 1972.
[11] Y. Guo. Decay and continuity of the boltzmann equation in bounded domains.
Archive for Rational Mechanics and Analysis, 197:713–809, 2010.
[12] I. Vidav. Spectra of perturbed semigroups with applications to transport theory.
J. Math. Anal. Appl., 30, 1970.
[13] S.-H. Yu. Stochastic formulation for the initial-boundary value problems of the
boltzmann equation. Archive for Rational Mechanics and Analysis, 192:217–
274, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top