|
[1] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52. [2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv Eng Mater 6(5) (2004) 299-303. [3] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Springer (2015). [4] B.S.M.J.-W.Y.S. Ranganathan, High-entropy alloys, (2014 ). [5] G.B.M. Kauffman, I. , The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2 (1997) (2): 1–21 [6] H. Kessler, W. Pitsch, On Nature of Martensite to Austenite Reverse Transformation, Acta Metall Mater 15(2) (1967) 401. [7] F. Hadef, Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X= Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review, Journal of Magnetism and Magnetic Materials 419 (2016) 105-118. [8] 李芝媛、吳錫侃,科儀新知第十六卷6 (1995) 6. [9] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948. [10] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060. [11] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367. [12] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230. [13] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298. [14] T.A. Schroeder, C.M. Wayman, Formation of Martensite and Mechanism of Shape Memory Effect in Single-Crystals of Cu-Zn Alloys, Acta Metall Mater 25(12) (1977) 1375-1391. [15] M. Nishida, T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni, Scripta Metall Mater 18(11) (1984) 1299-1302. [16] M. Nishida, C.M. Wayman, T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy, Scripta Metall Mater 18(12) (1984) 1389-1394. [17] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy, T Jpn I Met 27(10) (1986) 731-740. [18] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709. [19] T.Honma, ICOMAT-86 (1986) 709. [20] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152. [21] C.M.W. K.Otsuka, in: Reviews on the Deformation Behavior of Materials(1977). [22] C.M.W. K.Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981). [23] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [24] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875. [25] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972). [26] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Phys Status Solidi A 5(2) (1971) 457. [27] K.M. Knowles, D.A. Smith, The Crystallography of the Martensitic-Transformation in Equiatomic Nickel-Titanium, Acta Metall Mater 29(1) (1981) 101-110. [28] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of Martensitic-Transformation in Ti-Ni Single-Crystals, Acta Metall Mater 35(8) (1987) 2137-2144. [29] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy, Acta Metallurgica Et Materialia 43(3) (1995) 1219-1227. [30] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron-Microscopy Study of Twins in Martensite in a Ti-50.0 at Percent Ni-Alloy, Mater T Jim 33(4) (1992) 354-359. [31] H.C. Ling, R. Kaplow, Phase-Transitions and Shape Memory in Niti, Metall Trans A 11(1) (1980) 77-83. [32] C.M. Wayman, K. Shimizu, I. Cornelis, Transformation Behavior and Shape Memory in Thermally Cycled Tini, Scripta Metall Mater 6(2) (1972) 115. [33] F.E. Wang, B.F. Desavage, W.J. Buehler, W.R. Hosler, Irreversible Critical Range in Tini Transition, J Appl Phys 39(5) (1968) 2166. [34] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini, Metall Trans 2(10) (1971) 2769. [35] O. Mercier, K.N. Melton, Y. Depreville, Low-Frequency Internal-Friction Peaks Associated with the Martensitic Phase-Transformation of Niti, Acta Metall Mater 27(9) (1979) 1467-1475. [36] H.C. Ling, R. Kaplow, Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic Niti, Metall Trans A 12(12) (1981) 2101-2111. [37] E. Goo, R. Sinclair, The B2 to R Transformation in Ti50ni47fe3 and Ti49.5ni50.5 Alloys, Acta Metall Mater 33(9) (1985) 1717-1723. [38] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50ni47fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos Mag A 47(1) (1983) 31-62. [39] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metallurgica Et Materialia 25(7) (1991) 1529-1532. [40] A.P. Thomas duerig, Christine Trpanier, Nitinol, SMST e-Elastic newsletter (2011). [41] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .1. Compositional Dependence of 1/3 Reflections from the Matrix Phase, Metallography 15(3) (1982) 233-245. [42] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258. [43] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron-Microscope Observation of the Early Stages of Thermoelastic Martensitic-Transformation in a Ti-Ni-Cu Alloy, J Less-Common Met 118(2) (1986) 217-226. [44] T.H. Y Shugo, Two-Step Martensitic Transformation and Yield Strength in TiNi sub 0. 8 Cu sub 0. 2, Bull. Res. Inst. Miner. Dressing Metall. (1987). [45] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Shape Memory Characteristics Associated with the B2-Reversible-B19 and B19-Reversible-B19' Transformations in a Ti-40Ni-10Cu (at-Percent) Alloy, Mater T Jim 31(4) (1990) 262-269. [46] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Mater T Jim 31(12) (1990) 1050-1056. [47] T.H. Nam, T. Saburi, K. Shimizu, Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater T Jim 31(11) (1990) 959-967. [48] T.H. Nam, T. Saburi, K. Shimizu, Effect of Thermomechanical Treatment on Shape Memory Characteristics in a Ti-40ni-10cu (at Percent) Alloy, Mater T Jim 32(9) (1991) 814-820. [49] T.W.D.K.N.M.D. Stöckel, Engineering Aspects of Shape Memory Alloys(1990) 21. [50] 林振川, 國立台灣大學材料科學與工程研究所碩士論文(1991). [51] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33. [52] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall Mater 34(10) (1986) 2045-2051. [53] Y. Nakata, T. Tadaki, K. Shimizu, Thermal Cycling Effects in a Cu-Al-Ni Shape Memory Alloy, T Jpn I Met 26(9) (1985) 646-652. [54] G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng, Z.Y. Gao, Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys, Intermetallics 72 (2016) 30-35. [55] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120. [56] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom-Us 65(12) (2013) 1759-1771. [57] J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim-Sci Mat 31(6) (2006) 633-648. [58] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538. [59] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230. [60] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys 132(2-3) (2012) 233-238. [61] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater 61(13) (2013) 4887-4897. [62] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, J Alloy Compd 488(1) (2009) 57-64. [63] F. G.S, T.A.Kosorukova,Y.N.Koval,V.V.Odnosum, Materials Today:Proceedings 2 (2015) 499-504. [64] F. G.S, T.A.Kosorukova,Y.N.Koval,A.Verhovlyuk, Directions for High-Temperature Shape Memory Alloys' Improvement:Straight Way to High-Entropy Materials, Shap.Mem.Superelasticity 1 (2015) 400. [65] C. H. Chen, Y. J. Chen, Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 162 (2019) 185-189. [66] H.C. Lee, Y.J. Chen, C.H. Chen, Effect of solution treatment on the shape memory functions of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Entropy 21(10) (2019) 1027. [67] S.Li, D. Cong, X. Sun, Y. Zhang, Z. Chen, Z. Nie, R. Li, F. Li, Y. Ren, Y. Wang, Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy, Materials Research Letters 7(12) (2019) 482-489. [68] S.H. Chang, P.T. Lin, C.W. Tsai, High-temperature martensitic transformation of CuNiHfTiZr high-entropy alloys, Scientific reports 9(1) (2019) 1-7. [69] Y.J. Chen, 碩士論文, National Taiwan University, 2018. [70] L. Wang, C. Fu, Y. Wu, R. Li, X. Hui, Y. Wang, Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation, Scripta Materialia 162 (2019) 112-117. [71] L. Wang, C. Fu, Y. Wu, R. Li, Y. Wang, X. Hui, Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning, Materials Science and Engineering: A 763 (2019) 138147. [72] K.N. Lin, S.K. Wu, L.M. Wu, Martensitic Transformation of Ti50Ni25− XPd25− YCuX+ Y Quaternary Shape Memory Alloys with X, Y≤ 10 at%, Materials transactions 50(10) (2009) 2384-2390. [73] M.I. Khan, H.Y. Kim, T. h. Nam, S. Miyazaki, Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy, Acta Mater 60(16) (2012) 5900-5913. [74] J. Nei, K. H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24. [75] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50− xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235. [76] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci 61 (2014) 1-93. [77] K.C. Atli, I. Karaman, R.D. Noebe, Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Mat Sci Eng a-Struct 613 (2014) 250-258.
|