跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈佑年
研究生(外文):Yu-Nien Shen
論文名稱:Ti50-XNi15Pd25Cu10Vx(x=0~10)與Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15形狀記憶合金之麻田散體相變態行為與機械性質研究
論文名稱(外文):Research on Martensitic Transformation Behaviors andMechanical Properties of Ti50-xNi15Pd25Cu10Vx(x=0~10)and Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15 Shape Memory Alloys
指導教授:陳志軒陳志軒引用關係
指導教授(外文):Chih-Hsuan Chen
口試委員:吳錫侃林新智鄭憶中
口試委員(外文):Shyi-Kaan WuHsin-Chih LinI-Chung Cheng
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:130
中文關鍵詞:形狀記憶合金高熵合金時效熱處理熱循環形狀記憶效應超彈性彈熱效應
外文關鍵詞:shape memory alloyhigh entropy alloyaging processthermal cycleshape memory effectpsuedoelasticityelastocaloric effect
DOI:10.6342/NTU202002282
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之第一部分由TiNiPdCu 合金出發,設計TiNiPdCuV 系列之合金。加入V 取代Ti,使V的比例逐漸增加,分別為Ti50-xNi15Pd25Cu10Vx(x=0、0.5、1、1.5、2、2.5、3 和10)八種合金。研究不同比例之V對合金的形狀記憶效應、變態溫度、抗熱循環疲勞強度、顯微結構、析出強化的影響和晶體結構的變化,以及時效處理過後V 的比例對其形狀記憶性能的影響。在TiNiPdCu 合金中加入V 會影響合金的相組成,隨著V 的比例增加,合金會從兩相組成(類TiPd、類Ti2Ni)轉變成三相組成(類TiPd、類Ti2Ni、TiPdCu)在轉變成四相組成(類TiPd、類Ti2Ni、TiPdCu、V)。在TiNiPdCu 合金中加入V 也會降低合金的變態溫度,含V 量高的合金變態溫度低且強化析出效果的能力越好。在TiNiPdCu 合金中加入適量的V 會增強合金熱循環穩定性,且能夠保有良好的形狀記憶效應、超彈性以及彈熱效應。本研究之第二部分則是高熵形狀記憶合金Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15,透過控制熱處理溫度與時間調整形狀記憶效應和機械性質。研究不同時間的時效處理對合金的形狀記憶效應、變態溫度、抗熱循環疲勞強度以及析出強化的影響。時效處理過的Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15 合金會有兩階變態(低溫變態TL及高溫變態TH)的特性,且兩階變態的變態溫度皆會隨著時效時間增加而上升。其中TH 會隨著時效時間增加而被抑制轉變為只能透過應力誘發的麻田散體變態,展現出類似應變玻璃的特性。可於DSC 中量測到的TL 變態的熱循環穩定性並未隨著時效時間增長及析出硬化效果而有明顯改善,本研究顯示Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15 高熵形狀記憶合金具有許多特殊但未知的性質,如形狀記憶效應測試時,TH 會在TL 的應變飽和後才能被誘發等特性,以及多次熱循環後TL漸消而TH漸長之現象。顯示高熵形狀記憶合金領域仍有許多未明且值得探討的特殊性能。
The first part of this research investigated TiNiPdCuV series alloys based on TiNiPdCu SMA. V was added into TiNiPdCu alloy to replace Ti. 8 alloys withcompositions of Ti50-xNi15Pd25Cu10Vx(x=0、0.5、1、1.5、2、2.5、3 and 10) were prepared. The effect of the amount of V on martensite transformation temperature, thermal cycle stability, microstructure, precipitation strengthening, lattice constants. Additional of V into TiNiPdCu alloy changed the phase constitution of the alloy. The phase constitution changed from two phases (TiPd-like matrix and Ti2Ni-like second phase) to three phases (TiPd-like, Ti2Ni-like and TiPdCu), and finally became four phases (TiPd-like, Ti2Ni-like, TiPdC, and V-rich). The addition of V into TiNiPdCu alloy also decreased the martensite transformation temperature. The higher the amount of V in the alloy, the higher the precipitation strengthening effect and the lower the martensite transformation temperature. Adding 1.5 at.% of V improved the thermal cycle stability of the alloy. At the same time, it maintained good shape memory effect, pseudoelasticity, and elastocaloric effect. The second part of this research focused on the Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15 high entropy SMA. The effects of aging treatment on shape memory effect, martensite transformation temperature, thermal cycle stability, and the precipitation strengthening effect are investigated. Two martensitic transformation phenomena were obaserved when the aging time was within 1 h. The transformation at the higher temperature, TH, was suppressed and could only be induced by stress during the aging treatment. The thermal stability of the transformation at the lower temperature, TL, was not obviously improved after precipitation strengthening. It was also noted that Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15 high entropy SMA exhibited many unknow but special properties, such as strain-glass-like two-stage and thermal-cycling-enhanced transformation behaviors, which means that high entropy SMA is a new field that worth further studies.
摘要 i
Abstract ii
目錄 iii
第一章 前言 1
第二章 文獻探討 2
2-1 形狀記憶合金簡介 2
2-2 形狀記憶特性 2
2-2-1熱彈型麻田散體相變態 2
2-2-2形狀記憶效應 4
2-2-3擬彈性 6
2-3 TiNi基形狀記憶合金 7
2-4不同合金元素影響 9
2-5熱循環對合金之影響 10
2-6 高熵合金簡介 11
2-6-1高熵效應 12
2-6-2緩慢擴散 13
2-6-3晶格扭曲 13
2-6-4雞尾酒效應 14
2-7 高熵形狀記憶合金形成理論 14
2-8 高熵形狀記憶合金的發展 15
2-8-1 TiNi基高熵形狀記憶合金 15
2-8-2 Ti基高熵形狀記憶合金 15
2-9 TiNiPdCu形狀記憶合金的發展 16
第三章 實驗方法 33
3-1 合金配置與熔煉 34
3-2時效處理 35
3-3 DSC量測 35
3-4熱循環 36
3-5 DMA量測 36
3-5-1三點彎曲測試原理 37
3-6 SEM觀察 38
3-7 XRD分析 38
3-8 EPMA量測 38
3-9 TEM觀察 39
3-10 壓縮試驗 39
3-11彈熱效應之溫度變化量測 39
3-12硬度量測 40
第四章 Ti50-xNi15Pd25Cu10Vx系列合金 48
4-1混合熵計算 48
4-2固溶TiNiPdCuV系列合金 48
4-2-1合金相變態溫度與相變態行為之測量結果(DSC) 48
4-2-2 TiNiPdCuV系列合金顯微組織觀察結果(SEM、EDS) 49
4-2-3 TiNiPdCuV系列合金的熱循環穩定性 50
4-2-4 TiNiPdCuV系列合金晶體結構測量結果(XRD) 50
4-3時效對TiNiPdCuV系列合金之影響 51
4-3-1時效合金相變態溫度與相變態行為之測量結果(DSC) 51
4-3-2 時效TiNiPdCuV系列合金的熱循環穩定性 51
4-3-3 時效TiNiPdCuV系列合金顯微組織觀察結果 52
4-3-4 固溶與時效TiNiPdCuV系列合金硬度測量結果 53
4-3-5 Ti48.5Ni15Pd25Cu10V1.5合金形狀記憶效應測量結果 53
4-3-6 Ti48.5Ni15Pd25Cu10V1.5系列合金超彈性測量結果 54
第五章 Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15合金之性能 95
5-1 Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15合金之相變態行為與時效的影響 95
5-1-1合金相變態溫度與相變態行為之測量結果(DSC) 95
5-1-2合金的熱循環穩定性 96
5-1-3合金顯微組織觀察結果 96
5-1-4合金硬度測量結果(Vickers microhardness) 97
5-1-5 合金形狀記憶效應測量結果(DMA) 97
5-1-6 Co5合金之制震(damping)實驗 98
5-2 合金綜合討論 99
5-2-1 Co5合金固溶到時效1hr間的轉變過程 99
5-2-2 時效Co5合金的熱循環穩定性分析 100
5-2-3 隨著熱循環漸漸改變的二階變態 100
第六章 結論 123
6-1 Ti50-xNi15Pd25Cu10Vx系列合金 123
6-2 Ti16.5Zr16.5Hf16.5Ni30.5Co5Cu15合金之性能 124
參考文獻 126
[1] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52.
[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv Eng Mater 6(5) (2004) 299-303.
[3] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Springer (2015).
[4] B.S.M.J.-W.Y.S. Ranganathan, High-entropy alloys, (2014 ).
[5] G.B.M. Kauffman, I. , The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2 (1997) (2): 1–21
[6] H. Kessler, W. Pitsch, On Nature of Martensite to Austenite Reverse Transformation, Acta Metall Mater 15(2) (1967) 401.
[7] F. Hadef, Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X= Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review, Journal of Magnetism and Magnetic Materials 419 (2016) 105-118.
[8] 李芝媛、吳錫侃,科儀新知第十六卷6 (1995) 6.
[9] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948.
[10] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060.
[11] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367.
[12] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230.
[13] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298.
[14] T.A. Schroeder, C.M. Wayman, Formation of Martensite and Mechanism of Shape Memory Effect in Single-Crystals of Cu-Zn Alloys, Acta Metall Mater 25(12) (1977) 1375-1391.
[15] M. Nishida, T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni, Scripta Metall Mater 18(11) (1984) 1299-1302.
[16] M. Nishida, C.M. Wayman, T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy, Scripta Metall Mater 18(12) (1984) 1389-1394.
[17] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy, T Jpn I Met 27(10) (1986) 731-740.
[18] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709.
[19] T.Honma, ICOMAT-86 (1986) 709.
[20] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152.
[21] C.M.W. K.Otsuka, in: Reviews on the Deformation Behavior of Materials(1977).
[22] C.M.W. K.Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981).
[23] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528.
[24] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875.
[25] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972).
[26] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Phys Status Solidi A 5(2) (1971) 457.
[27] K.M. Knowles, D.A. Smith, The Crystallography of the Martensitic-Transformation in Equiatomic Nickel-Titanium, Acta Metall Mater 29(1) (1981) 101-110.
[28] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of Martensitic-Transformation in Ti-Ni Single-Crystals, Acta Metall Mater 35(8) (1987) 2137-2144.
[29] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy, Acta Metallurgica Et Materialia 43(3) (1995) 1219-1227.
[30] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron-Microscopy Study of Twins in Martensite in a Ti-50.0 at Percent Ni-Alloy, Mater T Jim 33(4) (1992) 354-359.
[31] H.C. Ling, R. Kaplow, Phase-Transitions and Shape Memory in Niti, Metall Trans A 11(1) (1980) 77-83.
[32] C.M. Wayman, K. Shimizu, I. Cornelis, Transformation Behavior and Shape Memory in Thermally Cycled Tini, Scripta Metall Mater 6(2) (1972) 115.
[33] F.E. Wang, B.F. Desavage, W.J. Buehler, W.R. Hosler, Irreversible Critical Range in Tini Transition, J Appl Phys 39(5) (1968) 2166.
[34] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini, Metall Trans 2(10) (1971) 2769.
[35] O. Mercier, K.N. Melton, Y. Depreville, Low-Frequency Internal-Friction Peaks Associated with the Martensitic Phase-Transformation of Niti, Acta Metall Mater 27(9) (1979) 1467-1475.
[36] H.C. Ling, R. Kaplow, Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic Niti, Metall Trans A 12(12) (1981) 2101-2111.
[37] E. Goo, R. Sinclair, The B2 to R Transformation in Ti50ni47fe3 and Ti49.5ni50.5 Alloys, Acta Metall Mater 33(9) (1985) 1717-1723.
[38] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50ni47fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos Mag A 47(1) (1983) 31-62.
[39] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metallurgica Et Materialia 25(7) (1991) 1529-1532.
[40] A.P. Thomas duerig, Christine Trpanier, Nitinol, SMST e-Elastic newsletter (2011).
[41] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .1. Compositional Dependence of 1/3 Reflections from the Matrix Phase, Metallography 15(3) (1982) 233-245.
[42] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258.
[43] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron-Microscope Observation of the Early Stages of Thermoelastic Martensitic-Transformation in a Ti-Ni-Cu Alloy, J Less-Common Met 118(2) (1986) 217-226.
[44] T.H. Y Shugo, Two-Step Martensitic Transformation and Yield Strength in TiNi sub 0. 8 Cu sub 0. 2, Bull. Res. Inst. Miner. Dressing Metall. (1987).
[45] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Shape Memory Characteristics Associated with the B2-Reversible-B19 and B19-Reversible-B19' Transformations in a Ti-40Ni-10Cu (at-Percent) Alloy, Mater T Jim 31(4) (1990) 262-269.
[46] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Mater T Jim 31(12) (1990) 1050-1056.
[47] T.H. Nam, T. Saburi, K. Shimizu, Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater T Jim 31(11) (1990) 959-967.
[48] T.H. Nam, T. Saburi, K. Shimizu, Effect of Thermomechanical Treatment on Shape Memory Characteristics in a Ti-40ni-10cu (at Percent) Alloy, Mater T Jim 32(9) (1991) 814-820.
[49] T.W.D.K.N.M.D. Stöckel, Engineering Aspects of Shape Memory Alloys(1990) 21.
[50] 林振川, 國立台灣大學材料科學與工程研究所碩士論文(1991).
[51] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33.
[52] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall Mater 34(10) (1986) 2045-2051.
[53] Y. Nakata, T. Tadaki, K. Shimizu, Thermal Cycling Effects in a Cu-Al-Ni Shape Memory Alloy, T Jpn I Met 26(9) (1985) 646-652.
[54] G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng, Z.Y. Gao, Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys, Intermetallics 72 (2016) 30-35.
[55] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120.
[56] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom-Us 65(12) (2013) 1759-1771.
[57] J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim-Sci Mat 31(6) (2006) 633-648.
[58] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538.
[59] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230.
[60] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys 132(2-3) (2012) 233-238.
[61] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater 61(13) (2013) 4887-4897.
[62] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, J Alloy Compd 488(1) (2009) 57-64.
[63] F. G.S, T.A.Kosorukova,Y.N.Koval,V.V.Odnosum, Materials Today:Proceedings 2 (2015) 499-504.
[64] F. G.S, T.A.Kosorukova,Y.N.Koval,A.Verhovlyuk, Directions for High-Temperature Shape Memory Alloys' Improvement:Straight Way to High-Entropy Materials, Shap.Mem.Superelasticity 1 (2015) 400.
[65] C. H. Chen, Y. J. Chen, Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 162 (2019) 185-189.
[66] H.C. Lee, Y.J. Chen, C.H. Chen, Effect of solution treatment on the shape memory functions of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Entropy 21(10) (2019) 1027.
[67] S.Li, D. Cong, X. Sun, Y. Zhang, Z. Chen, Z. Nie, R. Li, F. Li, Y. Ren, Y. Wang, Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy, Materials Research Letters 7(12) (2019) 482-489.
[68] S.H. Chang, P.T. Lin, C.W. Tsai, High-temperature martensitic transformation of CuNiHfTiZr high-entropy alloys, Scientific reports 9(1) (2019) 1-7.
[69] Y.J. Chen, 碩士論文, National Taiwan University, 2018.
[70] L. Wang, C. Fu, Y. Wu, R. Li, X. Hui, Y. Wang, Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation, Scripta Materialia 162 (2019) 112-117.
[71] L. Wang, C. Fu, Y. Wu, R. Li, Y. Wang, X. Hui, Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning, Materials Science and Engineering: A 763 (2019) 138147.
[72] K.N. Lin, S.K. Wu, L.M. Wu, Martensitic Transformation of Ti50Ni25− XPd25− YCuX+ Y Quaternary Shape Memory Alloys with X, Y≤ 10 at%, Materials transactions 50(10) (2009) 2384-2390.
[73] M.I. Khan, H.Y. Kim, T. h. Nam, S. Miyazaki, Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy, Acta Mater 60(16) (2012) 5900-5913.
[74] J. Nei, K. H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24.
[75] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50− xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235.
[76] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci 61 (2014) 1-93.
[77] K.C. Atli, I. Karaman, R.D. Noebe, Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Mat Sci Eng a-Struct 613 (2014) 250-258.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊