跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃士誠
研究生(外文):Shih-Cheng Huang
論文名稱:應用於非導磁金屬導電率量測之磁電渦流感測器開發
論文名稱(外文):Development of Magnetic/Eddy-Current Sensor for Electrical Conductivity Measurements of Non-Ferrous Metallic Objects
指導教授:林峻永林峻永引用關係
指導教授(外文):Chun-Yeon Lin
口試委員:黃漢邦顏家鈺蔡孟勳楊鏡堂
口試委員(外文):Han-Pang HuangJia-Yush YenMeng-Shiun TsaiJing-Tang Yang
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:49
中文關鍵詞:磁場電渦流場感測器導電率量測
外文關鍵詞:eddy current measurementmagnetic field measurementestimation of conductivity and thickAMR Sensor
DOI:10.6342/NTU202002307
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種基於磁阻抗感測器之磁電渦流感測系統開發,利用控制頻率的方法,同時預測非導磁金屬板之導電率及厚度,估測金屬板厚度為資訊做補償之導電率預測,增加準確度。在系統開發中,使用分散式電流源模型計算線圈於金屬導體產生的電渦流場及其產生之二次磁場做頻率響應的分析。分散式電流源法可以直接計算由非導磁金屬導體中電渦流產生之磁通量密度,效果比有限元素軟體模擬的結果更佳, 因為有限元素軟體測量非導磁金屬導體之電渦流產生磁場的方法,是透過計算線圈加上非導磁金屬導體產生的磁場,減去僅有線圈時的磁場,會造成較大的雜訊。
分散式電流源模型能有效地進行金屬板不同幾何與物理特性之模擬,應用於設計磁電渦流感測器。利用分散式電流源模型計算求得磁電渦流感測器之頻率響應,建立模擬的模板網格,經過校正後映射到實驗建立的網格。之後再以二維映射的方式將頻率響應的大小與相位,映射至導電率和厚度的座標,使用線性內插的方法估測導電率和厚度。相較於商用金屬導電率測試儀,此磁電渦流感測系統透過激勵線圈、閉迴路電流放大器以控制電路、異向磁阻感測器及相關功能放大電路組成,不僅成本較低,並可同時估測被測非導磁金屬物體之幾何及材料特性。為了準確控制線圈電流,此研究亦開發具有閉迴路功能之電流放大器。
本論文以分散式電流源法開發利用控制電流頻率的方法,同時估測非導磁金屬導電率及厚度之磁電渦流感測器,於測量較薄金屬片時,其導電率估測比商業用導電率量測儀更佳精準。
This paper proposes the development of a magnetic eddy current measurement system based on a magnetic sensor. The accuracy of conductivity estimation is increased by the compensation of metal thickness. Distributed Current Source (DCS) method is used to analyze the eddy current field and its secondary magnetic field. In addition, Distributed Current Source method calculates magnetic flux density generated by eddy current in non-magnetic metal conductor directly, and the result is better than the outcome of finite element method to measure the magnetic field generated by the eddy current of the non-magnetic metal conductor through finite element software, is by calculating the magnetic field generated by the excited coil and the non-magnetic metal conductor minus the magnetic field only contributed by the excited coil. The difference between the magnitude of these two methods is wide apart, so the finite element method will cause a larger error.
Distributed Current Source model can simulate sample with different geometric and physical characteristics, which not only provides the basis for the characteristic estimation, but also used to calibrate the experimental data and build the plate for estimation.
Use the sweep data simulated by Distributed Current Source model and experimental data to generate the plate, then use two –dimensional mapping method to project the frequency response to characteristic coordinate system. Finally, the properties of the metal are estimated by linearly interpolate.
Compared with the commercial metal conductivity tester, the cost of this magnetic eddy current test system consisted of an excited coil, a close-loop current amplifier, an anisotropic magnetoresistive sensor, and related functional circuit is lower. Moreover, this system can estimate the thickness and conductivity of the sample at the same time. In order to control the current which inputs to the coil, the closed-loop control circuit is discussed and developed in this paper.
Based on the simulation and experimental results, the proposed system is deemed effective in estimation of conductivity and thick of non-ferrous metal plate.
口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
表目錄 viii
圖目錄 ix
符號與縮寫解釋表 xi
第 1 章 前言 1
1.1 動機與方法 1
1.2 文獻回顧 1
1.2.1 接觸式測量 2
1.2.2 非接觸式測量 2
1.2.3 脈衝刺激測量 3
1.2.4 諧波刺激測量 3
1.3 問題描述 4
1.4 論文架構 4
第 2 章 研究背景及相關工作 5
2.1 電渦流測量的主要變因 5
2.1.1 導電率 5
2.1.2 導磁率 5
2.1.3 飛升效應 6
2.1.4 填充係數 6
2.1.5 邊界效應 7
2.1.6 集膚效應 7
2.2 量測設備 8
2.2.1 類比輸出介面卡 8
2.2.2 類比輸入介面卡 8
2.2.3 激勵線圈 8
2.2.4 異向磁阻感測器 9
第 3 章 非導磁金屬磁電渦流感測器系統設計 12
3.1 基於分散式電流源模型之量測金屬導體導電率系統之設計 12
3.2 分散式電流源模型 13
3.2.1 數學模型 13
3.2.2 二維軸對稱諧波模型 17
3.3 資料校正 18
3.4 二維線性映射內插法 19
3.5 功能電路 20
3.5.1 開路功能電路 20
3.5.2 閉路功能電路 21
第 4 章 模擬驗證與實驗分析 24
4.1 電流控制電路模擬設計與實驗 24
4.2 DCS模型驗證 28
4.3 不同金屬樣品之頻率響應分析 30
4.4 磁電渦流感測系統量測結果 32
4.4.1 系統量測之磁場響應 32
4.4.2 導電率及厚度估測 34
第 5 章 結論與未來展望 43
5.1 結論 43
5.2 未來展望 43
參考文獻 44
[1]C. Lin, K. Lee and B. Hao, “Distributed Current Source Method for Modeling Magnetic and Eddy-Current Fields Induced in Nonferrous Metallic Objects”,in IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1038-1049, June 2018.
[2]K.-M. Lee, C.-Y. Lin, M. Li and B. J. Hao, “Harmonic response of an eddy-current sensor for real-time measurement of thin-wall Titanium alloy workpiece”, Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pp. 1271-1276, 2016.
[3]K.-M. Lee, C.-Y. Lin, B. Hao and M. Li, “Coupled parametric effects on magnetic fields of eddy-current induced in non-ferrous metal plate for simultaneous estimation of geometrical parameters and electrical conductivity”, IEEE Trans. Magn., vol. 53, no. 10, Oct. 2017.
[4]Rybachuk, Volodymyr, and Yaroslav Kulynych. “Influence of anisotropy on eddy current conductivity measurement”, 2016 IEEE International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE, 2016.
[5]F. Lacy, “Developing a theoretical relationship between electrical resistivity temperature and film thickness for conductors”, Nanosc. Res. Lett., vol. 6, pp. 1, Dec. 2011.
[6]L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape”, Philips Res. Repts., vol. 13, pp. 1-9, Feb. 1958.
[7]G. Rietveld, C. V. Koijmans, L. C. A. Henderson, M. J. Hall, S. Harmon, P. Warnecke et al., “DC conductivity measurements in the Van der Pauw geometry”, IEEE Trans. Instrum. Meas., vol. 52, no. 2, pp. 449-453, Apr. 2003.
[8]H. Castro, J. Galvis and S. Castro, “Automated setup for Van Der Pauw Hall measurements”, IEEE Trans. Instrum. Meas., vol. 60, no. 1, pp. 198-205, Jan. 2011.
[9]B. Schumacher and J. Melcher, “Measurement of conductivity of materials at PTB”, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa, ON, pp. 1-2, 2016.
[10]A. V. Skrylev, A. E. Panich and G. S. Radchenko, “Quazistatic piezoelectric-magnet-metal symmetric device for effective measurement of low-frequency magnetic field”, 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, pp. 392-393, 2017.
[11]C. V. Dodd and W. E. Deeds, “Analytical solutions to eddy-current probe-coil problems”, J. Appl. Phys., vol. 39, no. 6, pp. 2829-2838, 1968.
[12]E. Ball, “Thickness and conductivity measurement of sheets of nonferrous metals”, IEE Proc. A Phys. Sci. Meas. Instrum. Manage. Edu.-Rev., vol. 134, no. 10, pp. 779-783, Dec. 1987.
[13]Uzal E., Moulder J.C., Rose J.H., “Measuring Thickness and Conductivity of Metallic Layers with Eddy Currents. In: Thompson D.O., Chimenti D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation”, Advances in Cryogenic Engineering, vol 28. Springer, Boston, MA,1992.
[14]T. P. Theodoulidis, “Analytical modeling of wobble in eddy current tube testing with bobbin coils”, Res. Nondestr. Eval., vol. 14, no. 2, pp. 111-126, Jun. 2002.
[15]T. P. Theodoulidis and E. E. Kriezis, “Series expansions in eddy current nondestructive evaluation”, J. Mater. Process. Technol., vol. 161, no. 12, pp. 343-347, 2005.
[16]P. Xu, S. L. Huang and W. Zhao, “Differential eddy current testing sensor composed of double gradient winding coils for crack”, The IEEE Sensors Applications Symposium, Ireland, February 2010.
[17]Yu, Y. T., & Du, P. A. (2005,). “Research on the correlation between measured material properties and output of eddy current sensor”, In IEEE International Conference on Industrial Technology, pp. 428-431, December 2005.
[18]X. D. Ma and A. J. Peyton, “Eddy current measurement of the electrical conductivity and porosity of metal foams”, IEEE Trans. Instrum. Meas., vol. 55, pp. 570-576, Apr. 2006.
[19]Chen, P., Huang, P., Li, G., Cai, W., & Zhou, Z, “Eddy current testing in thickness measurement of material with multi-layer structure”, In 2009 Chinese Control and Decision Conference, pp. 2065-2068, June 2009.
[20]D. Vasić, V. Bilas and D. Ambruš, “Compensation of coil radial offset in single-coil measurement of metal tube properties”, Proc. IEEE Instrum. Meas. Technol. Conf., pp. 1–5, Warsaw, Poland, May 2007.
[21]Wenxuan, D., Pingan, D., Yating, Y., & Lichuan, X., “Design and implementation of functional measuring circuit for material-independent eddy current sensor” In 2008 IEEE International Conference on Mechatronics and Automation, pp. 319-323, August 2008.
[22]L. Dziczkowski, “Elimination of coil liftoff from eddy current measurements of conductivity”, IEEE Trans. Instrum. Meas., vol. 62, no. 12, pp. 3301-3307, Dec. 2013.
[23]Gang, Z., Rui, X., Yu, C., Haowen, L., & Kexin, Y., “Research on double coil pulse eddy current thickness measurement”, In 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 406-409, October 2017.
[24]Guohou, L., Xusheng, K., Pingjie, H., Peihua, C., Dibo, H., Guangxin, Z., & Zekui, Z., “Thickness measuring of multilayer conductor based on eddy current testing”, In 2009 Chinese Control and Decision Conference, pp. 3269-3272, June 2009.
[25]O. Martens, R. Land, M. Rist and A. Pokatilov, “High-accuracy eddy current measurements of metals”, Proc. Metrol. Aerosp. (MetroAeroSpace), pp. 155-160, May 2014.
[26]S. Bensaid, D. Trichet and J. Fouladgar, “Optimal design of a rotating eddy-current probe—Application to characterization of anisotropic conductive materials”, IEEE Trans. Magn., vol. 51, no. 3, Mar. 2015.
[27]D. Vasic, V. Bilas and D. Ambrus, “Pulsed eddy-current nondestructive testing of ferromagnetic tubes”, IEEE Trans. Instrum. Meas., vol. 53, no. 4, pp. 1289-1294, Aug. 2004.
[28]W. Cheng and I. Komura, “Simulation of transient eddy-current measurement for the characerization of depth and conductivity of a condutive plate”, IEEE Trans. Magn., vol. 44, no. 11, pp. 3281-3284, Nov. 2008.
[29]J. Kral, R. Smid, H. M. G. Ramos and A. L. Ribeiro, “Thickness measurement using transient eddy current techniques”, Proc. I2MTC, pp. 138-143, 2011-May.
[30]G. Singh, H. M. Bapat, B. P. Singh, M. Bandyopadhyay, R. K. Puri and D.N Badodkar, “Thickness Evaluation of Aluminium Plate Using Pulsed Eddy Current Technique”, Journal of The Institution of Engineers (India): Series D, vol. 94, no. 2, pp. 89-93, 2013.
[31]L. Tian, C. Yin, Y. Cheng and L. Bai, “Successive approximation method for the measurement of thickness using pulsed eddy current”, Proc. IEEE Int. Instrum. Meas. Technol., pp. 848-852, May 2015.
[32]Z. Chen and K. Miya, “A new approach for optimal design of eddy current testing probes”, J. Nondestr. Eval., vol. 17, no. 3, pp. 105-116, 1998.
[33]D. Vasić, V. Bilas, B. Šnajder, “A model based design of low-frequency electromagnetic systems for metal tube inspection applications”, Proceedings of the 23rd IEEE Instrumentation and Measurement Technology Conference, pp. 2116-2120, 2006.
[34]Q. Feng et al., “A new differential excitation eddy current sensor used for micro-defects on metal surface”, 6th International Conference on ISDEA, 2015.
[35]He, D. F., Zhang, K., & Tang, J., “A contactless method to measure the electrical conductivity”, In 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), pp. 305-308, August 2017.
[36]J. Netz, E. Forner and S. Haggemann, “Contactless impedance measurements by magnetic induction̵a possible method for investigation of brain impedance”, Physiol. Meas., vol. 14, pp. 463-471, 1993.
[37]B. Karbeyaz and N. Gener, “Electrical conductivity imaging via contactless measurements: An experimental study”, IEEE Trans. Med. Imag., vol. 22, no. 5, pp. 627-635, May 2003.
[38]Tsai, Y. T., Huang, C. N., & Chung, H. Y., “The Design of Contactless Conductivity Sensor for Biological Tissues”, In IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2187-2190, November 2007.
[39]N. G. Gençer (Gencer) and M. N. Tek, “Forward problem solution for electrical conductivity imaging via contactless measurements”, Phys. Med. Biol., vol. 44, pp. 927-940, Apr. 1999.
[40]Abrantes, R., Rosado, L. S., Ramos, P. M., & Piedade, M., “Embedded measurement system for non-destructive testing using new eddy currents planar array probe”, In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 583-589, May 2014.
[41]K. Tsukada, T. Kiwa, T. Kawata and Y. Ishihara, “Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation”, IEEE Trans. Magn., vol. 42, no. 10, pp. 3315-3317, Oct. 2006.
[42]T. Griesbach, M. C. Wurz and L. Rissing, “Modular eddy current micro sensor”, IEEE Trans. Magn., vol. 47, no. 10, pp. 3760-3763, Oct. 2011.
[43]Ribeiro, A. L., Pasadas, D. J., Ramos, H. G., & Rocha, T., “Measurement of one field component to assess the eddy current surface current density”, In 2016 IEEE Metrology for Aerospace (MetroAeroSpace), pp. 276-279, June 2016.
[44]Huang, G. W., & Jeng, J. T., “Implementation of 16-Channel AMR Sensor Array for Quantitative Mapping of Two-Dimension Current Distribution”, IEEE Transactions on Magnetics, 2018.
[45]K Tsukada, M Hayashi, Y Nakamura, K Sakai and T Kiwa, “Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures”, IEEE Trans. Magn., vol. 54, 2018.
[46]J. Garcia-Martin, J. Gomez-Gil and E. Vazquez-Sanchez, “Non-destructive techniques based on eddy current testing”, Sensors, vol. 11, pp. 2525-2565, 2011.
[47]W. Yin, R. Binns, S. J Dickinson, C. Davis and A. J. Peyton, “Analysis of the liftoff effect of phase spectra for eddy current sensors”, IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2775-2781, Dec. 2007.
[48]Songling, H. Wei, Z., Peng, Y, “Improved immunity to lift-off effect in pulsed eddy current testing with two-stage differential probes”, Russian Journal of Nondestructive Testing, 2008.
[49]G. Y. Tian, Y. Li and C. Mandache, “Study of lift-off invariance for pulsed eddy-current signals”, IEEE Trans. Magn., vol. 45, pp. 184-191, 2009.
[50]T. P. Theodoulidis and J. R. Bowler, “Interaction of an eddy-current coil with a right-angled conductive wedge”, IEEE Trans. Magn., vol. 46, no. 4, pp. 1034-1042, Apr. 2010.
[51]J. Lim and K.-M. Lee, “Distributed multilevel current models for design analysis of electromagnetic actuators”, IEEE-ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2413-2424, Oct. 2015.
[52]J. N. Reddy, “An Introduction to the Finite Element Method”, pp. 526-570, 1984.
[53]K. M. Lee, B. Hao, M. Li and K. Bai, “Multi-parameter eddy-current sensor design for conductivity estimation and simultaneous distance and thickness measurements”, IEEE Trans. Ind. Inf., vol. 15, no. 3, pp. 1647-1657, Mar. 2019.
[54]Gu Jun,Yin Wuliang, “Accurate Distance Measurement Using An Eddy Current Sensor Based On An Analytical Model”, International Conference on Intelligent Computation Technology and Automation,2010, pp.397-399.
[55]O. Martens, R. Land, M. Rist and A. Pokatilov, “High-accuracy eddy current measurements of metals”, Proc. Metrol. Aerosp. (MetroAeroSpace), pp. 155-160, May 2014.
[56]Fan, W., He, J., Zhang, Z., Lin, A., Hou, R., Gong, W., & Xu, Z., “Error estimation of magnetic flux measurement of the permanent magnet materials in an open magnetic circuit”, In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), pp. 1-2, July 2016.
[57]Joo, S., Kim, D., Lee, H. K., & Rhie, K., “Spin Hall Effect Device for Magnetic Sensor Application”, In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), pp. 1-2, July 2018.
[58]Burkhardt, J. (2019), “Determination of the conductivity and thickness of conductive layers on conductive base materials”, Advances in Mechanical Engineering, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top