跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宣妤
研究生(外文):Hsuan-Yu Chen
論文名稱:具快速變換與跳躍能力之輪腳模組開發
論文名稱(外文):Development of a Novel Leg-wheel Module with Fast Transformation and Leaping Capability
指導教授:林沛群
指導教授(外文):Pei-Chun Lin
口試委員:黃光裕連豊力顏炳郎
口試委員(外文):Kuang-Yuh HuangFeng-Li LianPing-Lang Yen
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:91
中文關鍵詞:仿生機器人輪腳複合模組動態步態模型基礎控制外力估測虛擬彈簧
外文關鍵詞:bio-inspired robotleg-wheel hybrid moduledynamic gaitsmodel-based controlexternal force estimationvirtual spring
DOI:10.6342/NTU202002345
相關次數:
  • 被引用被引用:2
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討一種新型的輪腳複合模組之研發,此輪腳複合模組使用實驗室第一代輪腳複合機器人Quattroped開發的雙自由度馬達模組來驅動,透過對輪腳部分幾何形狀之主動控制,來進行輪模式與足模式間切換。該平台同時具有輪式平台與足式平台的功能,使其在平坦地面可以如同一般車輛以輪模式行進,發揮輪型載具快速省能的運動特性,在面臨較崎嶇的地形、階梯、障礙物時,可切換成足模式,藉由較高自由度的四肢以穿越障礙地形。新的輪腳複合模組擁有更長的腳長,能展現更高動態的步態,更高地跳躍性。
本文在設計與分析之後,開發出輪腳模組的實體,完成機構、機電、控制系統之間的整合,並規劃輪腳轉換之軌跡。採用model-based控制方法,以外力估測模型來估測外力,利用位置控制方式使輪腳模組的腳長方向自由度表現出如同被動彈簧的效果,以模擬SLIP模型中的彈簧表現,進而使用實體單腳平台來實驗,驗證其可行性。
This thesis mainly discusses the development of a novel leg-wheel hybrid module. This leg-wheel hybrid module is driven by a 2 degree-of-freedom (DoF) motor module developed in Quattroped, the first generation of leg-wheel robots in the laboratory. Proposed module is able to switch between wheel mode and legged mode by active control, and is capable of moving like a wheeled platform as well as a legged one. It can travel like a normal vehicle in wheel mode which can run fast and efficiently on flat ground. In contrast, the legged mode is superior in crossing various uneven terrains (such as rough ground, obstacles, stair, and etc) via coordination of 2 DoF of leg. The new leg-wheel hybrid module has a longer foot length, representing higher dynamic gait and higher jump.
After design and analysis, this thesis develops the leg-wheel hybrid module, integrating the mechanism, the electromechanical system, and the control system. Planning the trajectory of the transition between wheel mode and leg mode. Model-based control method is used. Estimate the external force by the external force estimation model and using position control. In this way, the DoF of the leg-wheel hybrid module in the lengthwise direction behaves like a passive spring to simulate the spring performance in the SLIP model. In the end, a series of experiments with the single-foot platform are presented to verify the feasibility.
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
符號表 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.4 貢獻 8
1.5 論文架構 9
第二章 輪腳機構設計 10
2.1 設計理念 10
2.2 各版本發想 12
2.2.1 鍊條式圓弧腳 12
2.2.2 五連桿 13
2.2.3 七連桿 15
2.3 運動學分析 18
2.4 桿件長度選擇 21
2.4.1 全域搜索 22
2.4.2 硬體機構限制 23
2.4.3 虛功法 24
2.5 硬體架構 26
2.5.1 雙自由度機構 26
2.5.2 輪腳模組碳纖管/鋁棒版 27
2.5.3 輪腳模組鋁件版 29
2.5.4 各版本比較 31
2.6 機電系統 32
2.7 空跑測試 33
第三章 輪腳轉換 34
3.1 動力學分析 34
3.1.1 Lagrange方程式 34
3.1.2 phase定義 36
3.2 輪腳轉換軌跡規劃 38
3.2.1 Wheel to leaping軌跡規劃 38
3.2.2 Foot to wheel軌跡規劃 48
3.3 輪腳轉換實驗 49
3.3.1 實驗平台簡介 49
3.3.2 Wheel to leaping實驗 50
第四章 單腳連續跳躍 54
4.1 Model-based控制 54
4.1.1 SLIP模型 55
4.1.2 模型與機器人腳之映射關係 58
4.2 虛擬彈簧控制 61
4.2.1 腳長l與角度θ間轉換關係 61
4.2.2 外力估測模型 63
4.2.3 控制策略 66
4.3 虛擬彈簧實驗 67
4.3.1 單馬達扭力常數測試 67
4.3.2 負載測k值實驗 69
4.3.3 單腳連續跳躍實驗 75
第五章 結論與未來展望 82
REFERENCE 83
[1]FANUC. "FANUC robot arm." (accessed 13 July, 2020). Available: https://www.fanuc.eu/uk/en/robots/robot-range-page
[2]M. I. Inc. "Kiva systems." (accessed 13 July, 2020). Available: https://mwpvl.com/html/kiva_systems.html
[3]iRobot. "iRobot Roomba s9+." (accessed 13 July, 2020). Available: https://www.irobot.com.tw/
[4]A. K. Pandey and R. Gelin, "A mass-produced sociable humanoid robot: Pepper: The first machine of its kind," IEEE Robotics & Automation Magazine, 2018. vol. 25, no. 3, pp. 40-48.
[5]L. Bruzzone and P. Fanghella, "Mantis hybrid leg-wheel robot: stability analysis and motion law synthesis for step climbing," in IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2014, pp. 1-6.
[6]R. Playter, M. Buehler, and M. Raibert, "BigDog," in Unmanned Systems Technology VIII, 2006, vol. 6230: International Society for Optics and Photonics, p. 62302O.
[7]L. Bruzzone and P. Fanghella, "Functional redesign of Mantis 2.0, a hybrid leg-wheel robot for surveillance and inspection," Journal of Intelligent & Robotic Systems, 2016. vol. 81, no. 2, pp. 215-230.
[8]C. Semini, "HyQ—Design and development of a hydraulically actuated quadruped robot," University of Genoa, Italy, 2010.
[9]C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, "Design of HyQ – a hydraulically and electrically actuated quadruped robot," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011. vol. 225, no. 6, pp. 831-849.
[10]I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, and D. G. Caldwell, "Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ)," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 6052-6057.
[11]H. Khan et al., "Development of the lightweight hydraulic quadruped robot — MiniHyQ," in IEEE International Conference on Technologies for Practical Robot Applications (TePRA), 11-12 May 2015, pp. 1-6.
[12]M. Hutter et al., "Anymal-a highly mobile and dynamic quadrupedal robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 38-44.
[13]M. Hutter et al., "Anymal-toward legged robots for harsh environments," Advanced Robotics, 2017. vol. 31, no. 17, pp. 918-931.
[14]P. Fankhauser and M. Hutter, "ANYmal: a unique quadruped robot conquering harsh environments," Research Features, 2018. no. 126, pp. 54-57.
[15]S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, "Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot," in IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 3307-3312.
[16]D. J. Hyun, S. Seok, J. Lee, and S. Kim, "High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah," The International Journal of Robotics Research, 2014. vol. 33, no. 11, pp. 1417-1445.
[17]H. W. Park, S. Park, and S. Kim, "Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3d running of mit cheetah 2," in IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 5163-5170.
[18]S. Seok et al., "Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah robot," IEEE/ASME Transactions on Mechatronics, 2015. vol. 20, no. 3, pp. 1117-1129.
[19]P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, "Proprioceptive actuator design in the MIT Cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots," IEEE Transactions on Robotics (T-RO) 2017. vol. 33, no. 3, pp. 509-522.
[20]G. Bledt, M. J. Powell, B. Katz, J. D. Carlo, P. M. Wensing, and S. Kim, "MIT cheetah 3: design and control of a robust, dynamic quadruped robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2245-2252.
[21]J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1-9.
[22]B. Katz, J. D. Carlo, and S. Kim, "Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control," in IEEE International Conference on Robotics and Automation (ICRA), 20-24 May 2019, pp. 6295-6301.
[23]G. Kenneally and D. E. Koditschek, "Leg design for energy management in an electromechanical robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 5712-5718.
[24]G. Kenneally, A. De, and D. E. Koditschek, "Design Principles for a Family of Direct-Drive Legged Robots," IEEE Robotics and Automation Letters, 2016. vol. 1, no. 2, pp. 900-907.
[25]T. T. Topping, G. Kenneally, and D. E. Koditschek, "Quasi-static and dynamic mismatch for door opening and stair climbing with a legged robot," in IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 1080-1087.
[26]M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and T. B. Team, "Bigdog, the rough-terrain quadruped robot," in The International Federation of Automatic Control, Seoul, Korea, 2008, vol. 17, no. 1, pp. 10822-10825.
[27]S. Hirose, K. Yoneda, and H. Tsukagoshi, "TITAN VII: Quadruped walking and manipulating robot on a steep slope," in IEEE International Conference on Robotics and Automation (ICRA), 1997, vol. 1, pp. 494-500.
[28]R. Hodoshima, Y. Fukumura, H. Amano, and S. Hirose, "Development of track-changeable quadruped walking robot TITAN X-design of leg driving mechanism and basic experiment," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 3340-3345.
[29]S. Kitano, S. Hirose, G. Endo, and E. F. Fukushima, "Development of lightweight sprawling-type quadruped robot TITAN-XIII and its dynamic walking," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 6025-6030.
[30]KOD*LAB. "GHOST MINITAUR™." (accessed 13 July, 2020). Available: https://kodlab.seas.upenn.edu/robots/ghost-minitaur/
[31]J. B. Jeans and D. Hong, "IMPASS: Intelligent Mobility Platform with Active Spoke System," in IEEE International Conference on Robotics and Automation (ICRA), 12-17 May 2009, pp. 1605-1606.
[32]R. Altendorfer et al., "RHex: A biologically inspired hexapod runner," Autonomous Robots, 2001. vol. 11, no. 3, pp. 207-213.
[33]U. Saranli, M. Buehler, and D. E. Koditschek, "RHex: A simple and highly mobile hexapod robot," The International Journal of Robotics Research, 2001. vol. 20, no. 7, pp. 616-631.
[34]R. T. Schroer, M. J. Boggess, R. J. Bachmann, R. D. Quinn, and R. E. Ritzmann, "Comparing cockroach and Whegs robot body motions," in IEEE International Conference on Robotics and Automation (ICRA), 2004, vol. 4, pp. 3288-3293.
[35]G. Endo and S. Hirose, "Study on Roller-Walker - Adaptation of characteristics of the propulsion by a leg trajectory," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 22-26 Sept. 2008, pp. 1532-1537.
[36]BostonDynamics. "Introducing Handle." (accessed 13 July, 2020). Available: https://www.youtube.com/watch?v=-7xvqQeoA8c
[37]L. Bruzzone, G. Quaglia, and R. Razzoli, "Epi. q Lizard: a modular ground mobile robot," Proceedings of AIMETA, 2013.
[38]K. Turker, I. Sharf, and M. Trentini, "Step negotiation with wheel traction: a strategy for a wheel-legged robot," in IEEE International Conference on Robotics and Automation (ICRA), 14-18 May 2012, pp. 1168-1174.
[39]G. Endo and S. Hirose, "Study on Roller-Walker (system integration and basic experiments)," in IEEE International Conference on Robotics and Automation (ICRA), 1999, vol. 3, pp. 2032-2037.
[40]G. Endo and S. Hirose, "Study on Roller-Walker (multi-mode steering control and self-contained locomotion)," in IEEE International Conference on Robotics and Automation (ICRA), 2000, vol. 3, pp. 2808-2814.
[41]G. Endo and S. Hirose, "Study on Roller-Walker - Energy efficiency of Roller-Walk," in IEEE International Conference on Robotics and Automation (ICRA), 9-13 May 2011, pp. 5050-5055.
[42]N. Owano. "Handle: boston dynamics robot on wheels performs on stage." (accessed 13 July, 2020). Available: https://techxplore.com/news/2017-02-boston-dynamics-robot-wheels-stage.html
[43]J. A. Smith, I. Sharf, and M. Trentini, "PAW: a hybrid wheeled-leg robot," in IEEE International Conference on Robotics and Automation (ICRA), 15-19 May 2006, pp. 4043-4048.
[44]J. A. Smith, I. Sharf, and M. Trentini, "Bounding Gait in a Hybrid Wheeled-Leg Robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9-15 Oct. 2006, pp. 5750-5755.
[45]H. Adachi and N. Koyachi, "Development of a leg-wheel hybrid mobile robot and its step-passing algorithm," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2001, vol. 2, pp. 728-733.
[46]H. Adachi, N. Koyachi, T. Arai, A. Shimiza, and Y. Nogami, "Mechanism and control of a leg-wheel hybrid mobile robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1999, vol. 3, pp. 1792-1797.
[47]I. Leppänen, S. Salmi, and A. Halme, "WorkPartner–HUT-Automations new hybrid walking machine," in 1st International Conference on Climbing and Walking Robots, Brussels, 1998, pp. 391-394.
[48]C. Grand, F. BenAmar, F. Plumet, and P. Bidaud, "Decoupled control of posture and trajectory of the hybrid wheel-legged robot Hylos," in IEEE International Conference on Robotics and Automation (ICRA), 26 April-1 May 2004, vol. 5, pp. 5111-5116.
[49]G. Besseron, C. Grand, F. B. Amar, and P. Bidaud, "Decoupled control of the high mobility robot Hylos based on a dynamic stability margin," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 22-26 Sept. 2008, pp. 2435-2440.
[50]H. Choi, C. Woo, S. Kim, Y. Kwak, and S. Yoon, "Independent traction control for uneven terrain using stick-slip phenomenon: application to a stair climbing robot," (in English), Autonomous Robots, 01, July 2007. vol. 23, no. 1, pp. 3-18.
[51]Z. Wei, G. Song, G. Qiao, Y. Zhang, and H. Sun, "Design and implementation of a leg–wheel robot: transleg," Journal of Mechanisms and Robotics, 2017. vol. 9, no. 5, p. 051001.
[52]S. Guccione and G. Muscato, "The wheeleg robot," IEEE Robotics & Automation Magazine, 2003. vol. 10, no. 4, pp. 33-43.
[53]T. Okada, W. T. Botelho, and T. Shimizu, "Motion analysis with experimental verification of the hybrid robot PEOPLER-II for reversible switch between walk and roll on demand," The International Journal of Robotics Research, 2010. vol. 29, no. 9, pp. 1199-1221.
[54]Y. J. Dai, E. Nakano, T. Takahashi, and H. Ookubo, "Motion control of leg-wheel robot for an unexplored outdoor environment," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1996, vol. 2, pp. 402-409.
[55]Z. Wei, G. Song, Y. Zhang, H. Sun, and G. Qiao, "Transleg: A wire-driven leg-wheel robot with a compliant spine," in IEEE International Conference on Information and Automation (ICIA), 2016, pp. 7-12.
[56]S. Nakajima, E. Nakano, and T. Takahashi, "Motion control technique for practical use of a leg-wheel robot on unknown outdoor rough terrains," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, vol. 2, pp. 1353-1358.
[57]G. Muscato and S. Guccione, "Test of the hybrid robot WHEELEG on a volcanic environment," in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001, vol. 1, p. 3.
[58]M. Lacagnina, G. Muscato, and R. Sinatra, "Kinematics, dynamics and control of a hybrid robot Wheeleg," Robotics and Autonomous Systems, 2003. vol. 45, no. 3–4, pp. 161-180.
[59]K. Tadakuma et al., "Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 3358-3365.
[60]F. Zhou, H. Xu, and X. Zhang, "A wheel-track-Leg hybrid Locomotion Mechanism based on transformable rims," in IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 315-320.
[61]Y. S. Kim, G. P. Jung, H. Kim, K. J. Cho, and C. N. Chu, "Wheel transformer: a wheel-leg hybrid robot with passive transformable wheels," IEEE Transactions on Robotics (T-RO) 2014. vol. 30, no. 6, pp. 1487-1498.
[62]R. Rafique, "Reconfigurable mechanism for mobile robotic platform," in 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, 2013, pp. 714-721.
[63]S. S. Yun, J. Y. Lee, G. P. Jung, and K. J. Cho, "Development of a transformable wheel actuated by soft pneumatic actuators," International Journal of Control, Automation and Systems, 2017. vol. 15, no. 1, pp. 36-44.
[64]F. Zhou, X. Xu, H. Xu, and X. Zhang, "A multimodal hybrid robot with transformable wheels," in IEEE International Conference on Real-time Computing and Robotics (RCAR), 2017, pp. 139-144.
[65]Y. S. Kim, G. P. Jung, H. Kim, K. J. Cho, and C. N. Chu, "Wheel transformer: A miniaturized terrain adaptive robot with passively transformed wheels," in IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 5625-5630.
[66]S. C. Chen, K. J. Huang, C. H. Li, and P. C. Lin, "Trajectory planning for stair climbing in the leg-wheel hybrid mobile robot quattroped," in IEEE International Conference on Robotics and Automation (ICRA), 9-13 May 2011, pp. 1229-1234.
[67]S.-C. Chen, K.-J. Huang, W.-H. Chen, S.-Y. Shen, C.-H. Li, and P.-C. Lin, "Quattroped: A Leg--Wheel Transformable Robot," IEEE/ASME Transactions on Mechatronics, 2014. vol. 19, no. 2, pp. 730-742.
[68]W. H. Chen, H. S. Lin, and P. C. Lin, "TurboQuad: A leg-wheel transformable robot using bio-inspired control," in IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2090-2090.
[69]W. H. Chen, H. S. Lin, Y. M. Lin, and P. C. Lin, "TurboQuad: a novel leg–wheel transformable robot with smooth and fast behavioral transitions," IEEE Transactions on Robotics (T-RO) 2017. vol. 33, no. 5, pp. 1025-1040.
[70]R. J. Full and D. E. Koditschek, "Templates and anchors: neuromechanical hypotheses of legged locomotion on land," Journal of Experimental Biology, 1999. vol. 202, no. 23, pp. 3325-3332.
[71]E. Evans, "Elastic Mechanisms in Animal Movement," Journal of anatomy, 1989. vol. 164, p. 231.
[72]P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, "The dynamics of legged locomotion: Models, analyses, and challenges," Siam Review, 2006. vol. 48, no. 2, pp. 207-304.
[73]R. Blickhan and R. J. Full, "Similarity in multilegged locomotion: Bouncing like a monopode," Journal of Comparative Physiology A, 1993. vol. 173, no. 5, pp. 509-517.
[74]M. M. Ankaralı and U. Saranlı, "Control of underactuated planar pronking through an embedded spring-mass hopper template," Autonomous Robots, 2011. vol. 30, no. 2, pp. 217-231.
[75]M. Hutter, C. D. Remy, M. A. Höpflinger, and R. Siegwart, "Slip running with an articulated robotic leg," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 4934-4939.
[76]R. Altendorfer, D. E. Koditschek, and P. Holmes, "Stability Analysis of a Clock-Driven Rigid-Body SLIP Model for RHex," The International Journal of Robotics Research, 2004. vol. 23, no. 10-11, pp. 1001-1012.
[77]D. Koepl and J. Hurst, "Force control for planar spring-mass running," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 25-30 Sept. 2011, pp. 3758-3763.
[78]A. Hereid, S. Kolathaya, M. S. Jones, J. Van Why, J. W. Hurst, and A. D. Ames, "Dynamic multi-domain bipedal walking with atrias through slip based human-inspired control," in Proceedings of the 17th international conference on Hybrid systems: computation and control, 2014: ACM, pp. 263-272.
[79]林筠萌, "基於力控制之輪腳複合機器人動態步態生成," 工學院機械工程學系, 國立臺灣大學, 2017.
[80]Y. M. Lin, H. S. Lin, and P. C. Lin, "Slip-model-based dynamic gait generation in a leg-wheel transformable robot with force control," IEEE Robotics and Automation Letters, 2017. vol. 2, no. 2, pp. 804-810.
[81]H. S. Lin, Y. M. Lin, and P. C. Lin, "SLIP-Model-Based Dynamic Motion Transition Between Different Fixed Points in One Stride in a Leg-Wheel Transformable Robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2715-2720.
[82]J. Y. Jun and J. E. Clark, "Effect of rolling on running performance," in IEEE International Conference on Robotics and Automation (ICRA), 9-13 May 2011, pp. 2009-2014.
[83]M. M. Ankarali, N. J. Cowan, and U. Saranli, "TD-SLIP: A better predictive model for human running," Proceedings of Dynamic Walking, 2012.
[84]K. J. Huang and P. C. Lin, "Rolling SLIP: A model for running locomotion with rolling contact," in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 11-14 July 2012, pp. 21-26.
[85]C. K. Huang, K. J. Huang, and P. C. Lin, "Rolling SLIP model based running on a hexapod robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3-7 Nov. 2013, pp. 5608-5614.
[86]C. J. Hu, C. K. Huang, and P. C. Lin, "A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot," in IEEE International Conference on Robotics and Automation (ICRA), May 26-30 2015, pp. 5177-5183.
[87]W. C. Lu, M. Y. Yu, and P. C. Lin, "Clock-torqued rolling SLIP model and its application to variable-speed running in a hexapod robot," IEEE Transactions on Robotics (T-RO) 2018. vol. 34, no. 6, pp. 1643-1650.
[88]C. K. Huang, C. L. Chen, C. J. Hu, and P. C. Lin, "Model-based bounding on a quadruped robot," in IEEE International Conference on Robotics and Automation (ICRA), 16-21 May 2016, pp. 3576-3581.
[89]沈宣諭, "輪腳雙模式運動平台之研發," 碩士論文, 工學院機械工程學系, 國立臺灣大學, 2009.
[90]陳愼強, "輪腳複合式移動平台運動模式開發," 碩士論文, 工學院機械工程學系, 國立臺灣大學, 2011.
[91]陳為熙, "輪腳快速變換平台及其仿生控制架構之開發," 工學院機械工程學系, 國立臺灣大學, 2013.
[92]林紘生, "輪腳複合機器人之動態步態與越障姿態調控," 工學院機械工程學系, 國立臺灣大學, 2015.
[93]A. J. Ijspeert, "Central pattern generators for locomotion control in animals and robots: a review," Neural Networks, 2008. vol. 21, no. 4, pp. 642-653.
[94]J. Buchli, L. Righetti, and A. J. Ijspeert, "Engineering entrainment and adaptation in limit cycle systems," Biological Cybernetics, 2006. vol. 95, no. 6, pp. 645-664.
[95]K. Russell, Q. Shen, and R. S. Sodhi, Kinematics and dynamics of mechanical systems: implementation in MATLAB and SimMechanics. CRC Press, 2016.
[96]J. C. Arevalo and E. Garcia, "Impedance control for legged robots: An insight into the concepts involved," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012. vol. 42, no. 6, pp. 1400-1411.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top