跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾巧貞
研究生(外文):Ciao-Jhen Jhong
論文名稱:低力矩漣波之衛星永磁馬達最佳化設計與驅動
論文名稱(外文):Optimal Design and Control of Permanent Magnet Motor with Low Torque Ripple for Satellite
指導教授:楊士進
指導教授(外文):Shih-Chin Yang
口試委員:楊勝明蔡孟勳周柏寰陳冠任
口試委員(外文):Sheng-Ming YangMeng-Shiun TsaiPo-Huan ChouGuan-Ren Chen
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:衛星控制反應輪徑向磁通電機向量控制
外文關鍵詞:Satellite controlreaction wheelradial flux motorfield-oriented control
DOI:10.6342/NTU202002432
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
衛星反應輪又俗稱動量輪,是人造衛星姿態控制的主要動力來源,反應輪由飛輪和馬達組成,透過控制反應輪的角動量,即使有相當大的力矩干擾,也能在太空中實現衛星姿態控制,衛星反應輪開發由構想推斷、設計分析、控制系統、測試設計到反應輪製造驗證等多方面來執行。
考量到太空應用,動態響應、重量和力矩漣波是主要考慮因素。為了實現快速響應和低力矩漣波,定子採用無齒槽繞線,但是,無齒槽繞組會導致漏磁通,降低轉矩輸出。本論文進行馬達尺寸最佳化來集中磁通鏈來減少漏磁通。首先,利用雙轉子拓撲集中氣隙磁通密度,將無齒槽繞線所引起的漏磁通最小化。再來,選擇Halbach陣列弦波充磁來以實現正弦波磁通分布,且分析不同的Halbach陣列弦波充磁角度使轉矩漣波最小化。最後,研究無齒槽雙轉子馬達的氣隙位置,進一步減少漏磁通。並以實驗測試反應輪馬達原型來驗證馬達最佳化設計。
此外在高效率馬達驅動方面,採用弦波向量控制可以降低力矩漣波,但是因為衛星空間有限無法加裝編碼器,需改以霍爾感測器獲取角度資訊。本論文提出結合霍爾感測差值式弦波控制和反電動勢無位置感測弦波驅動合成控制方法,試圖改善傳統衛星使用的霍爾感測差值式弦波控制,所以驅動方法將以實驗驗證。
The reaction wheel is referred as the momentum wheel. It is the primary power source for the satellite attitude control. Reaction wheel consists of a flywheel and a motor. By manipulating the angular momentum of reaction wheel, the satellite attitude control can be achieved in the aerospace even with considerable disturbance torques. The development of reaction wheel is a multidisciplinary research including geometric design, system analysis, prototype manufacture and evaluation.
Considering aerospace applications, the dynamic response, weight and torque ripple are primarily concerns. To achieve the fast response and low torque ripple, a stator with slotless windings is designed. However, slotless windings contain visible leakage fluxes which decrease the torque production. In this thesis, motor geometric design methods are proposed to decrease leakage fluxes by concentrating the flux linkage. First, leakage fluxes are minimized through the dual-rotor topology. Second, Halbach array magnets are chosen to realize the sinusoidal flux linkage distribution. Different array angles are analyzed to minimize the torque ripple. The air gap position is finally adjusted to minimize leakage fluxes. A motor prototype is built for experimental tests to verify the motor geometric optimization.
In addition for the high performance motor control, field-oriented control (FOC) is preferred to reduce the torque ripple. However due to the limitation on the satellite size, it is a challenge to install an encoder. Instead, Hall sensors are used to obtain the position information. This thesis combines both Hall-based FOC and electromotive force (EMF)-based FOC to realize a full region FOC drive. The improved control performance is concluded comparing to conventional Hall-based FOC. All the control methods are verified based on experimental tests.
口試委員會審定書 iii
中文摘要 v
ABSTRACT vii
目錄 ix
表目錄 xiii
圖目錄 xv
符號列表 xxi
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 無齒槽式定子設計 3
1.2.2 Halbach陣列弦波充磁轉子設計 7
1.2.3 雙轉子設計 10
1.2.4 方波vs.弦波控制 12
1.2.5 無位置感測器控制 13
1.2.6 霍爾感測位置估測器 18
1.3 研究目的 20
1.3.1 選擇馬達拓樸以符合太空環境要求 20
1.3.2 雙環反應輪馬達氣隙尺寸最佳化 20
1.3.3 全速度域估測器設計 20
1.4 論文大綱 22
第2章 馬達結構設計與驗證 23
2.1 馬達設計目標 23
2.2 選擇定子與轉子構造 24
2.3 Halbach 陣列充磁設計 28
2.4 馬達轉子幾何最佳化 32
2.4.1 設計氣隙中心處半徑 33
2.4.2 調整氣隙寬度 36
2.4.3 最佳化前後性能比較 38
2.5 反應輪馬達雛形製造 40
2.6 實驗平台 41
2.7 反電動勢實驗驗證 43
第3章 全速度域估測器設計 45
3.1 弦波控制架構 45
3.1.1 霍爾感測差值式弦波控制原理 45
3.1.2 反電動勢無位置感測器弦波控制原理 50
3.2 弦波控制性能比較 51
3.3 全速度域估測器架構 57
3.3.1 Weighting based blending observer 57
3.3.2 Filter-based blending observer 58
3.4 全速度域估測器性能比較 60
第4章 結論及未來工作 69
4.1 結論 69
4.1.1 馬達尺寸最佳化 69
4.1.2 全速度域估測器 69
4.2 未來工作 70
4.2.1 繞線方式 70
4.2.2 非接觸式力矩器 71
參考文獻 73
[1]M.-C. Chou, C.-M. Liaw, S.-B. Chien, F.-H. Shieh, J.-R. Tsai, and H.-C. Chang, "Development and Control for a Reaction Wheel System Driven by Permanent Magnet Synchronous Motor," in 2008 13th International Power Electronics and Motion Control Conference, pp. 1652-1659.
[2]B. Xiao, M. Huo, X. Yang, and Y. Zhang, "Fault-Tolerant Attitude Stabilization for Satellites Without Rate Sensor," IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7191-7202, 2015.
[3]J. G. Bitterly, "Flywheel Technology: Past, Present, and 21st Century Projections," IEEE Aerospace and Electronic Systems Magazine, vol. 13, no. 8, pp. 13-16, 1998.
[4]R. Takehana and K. Uchiyama, "Attitude Controller Design for a Small Satellite Using Spherical Reaction Wheel System," in 2017 11th Asian Control Conference (ASCC), pp. 1841-1846.
[5]Z. Ismail and R. Varatharajoo, "A Study of Reaction Wheel Configurations for a 3-axis Satellite Attitude Control," Advances in Space Research, vol. 45, no. 6, pp. 750-759, 2010.
[6]N. Bianchi, S. Bolognani, and F. Luise, "Potentials and Limits of High-speed PM Motors," IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1570-1578, 2004.
[7]J. Millinger, O. Wallmark, and J. Soulard, "High-Frequency Characterization of Losses in Fully Assembled Stators of Slotless PM Motors," IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2265-2275, 2018.
[8]S. Jumayev, K. O. Boynov, J. J. H. Paulides, E. A. Lomonova, and J. Pyrhönen, "Slotless PM Machines With Skewed Winding Shapes: 3-D Electromagnetic Semianalytical Model," IEEE Transactions on Magnetics, vol. 52, no. 11, pp. 1-12, 2016.
[9]A. Looser, T. Baumgartner, J. W. Kolar, and C. Zwyssig, "Analysis and Measurement of Three-Dimensional Torque and Forces for Slotless Permanent-Magnet Motors," IEEE Transactions on Industry Applications, vol. 48, no. 4, pp. 1258-1266, 2012.
[10]O. Wallmark, P. Kjellqvist, and F. Meier, "Analysis of Axial Leakage in High-Speed Slotless PM Motors for Industrial Hand Tools," in 2008 IEEE Industry Applications Society Annual Meeting, pp. 1-6.
[11]A. Tessarolo, M. Bortolozzi, and C. Bruzzese, "Explicit Torque and Back EMF Expressions for Slotless Surface Permanent Magnet Machines With Different Magnetization Patterns," IEEE Transactions on Magnetics, vol. 52, no. 8, pp. 1-15, 2016.
[12]D. Lee, A. Jin, B. Min, L. Zheng, and K. Haran, "Optimisation Method to Maximise Torque Density of High-speed Slotless Permanent Magnet Synchronous Machine in Aerospace Applications," IET Electric Power Applications, vol. 12, no. 8, pp. 1075-1081, 2018.
[13]Z. Q. Zhu and D. Howe, "Halbach Permanent Magnet Machines and Applications: A Review," IEE Proceedings - Electric Power Applications, vol. 148, no. 4, pp. 299-308, 2001.
[14]K. Liu, M. Yin, W. Hua, Z. Ma, M. Lin, and Y. Kong, "Design and Analysis of Halbach Ironless Flywheel BLDC Motor/Generators," IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.
[15]L. Yang, J. Zhao, L. Yang, X. Liu, and L. Zhao, "Investigation of a Stator-Ironless Brushless DC Motor With Non-Ideal Back-EMF," IEEE Access, vol. 7, pp. 28044-28054, 2019.
[16]L. Yang, J. Zhao, X. Liu, A. Haddad, J. Liang, and H. Hu, "Comparative Study of Three Different Radial Flux Ironless BLDC Motors," IEEE Access, vol. 6, pp. 64970-64980, 2018.
[17]Z. Q. Zhu, Z. P. Xia, and D. Howe, "Comparison of Halbach Magnetized Brushless Machines Based on Discrete Magnet Segments or a Single Ring Magnet," IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 2997-2999, 2002.
[18]C. Xia, Z. Zhang, and Q. Geng, "Analytical Modeling and Analysis of Surface Mounted Permanent Magnet Machines With Skewed Slots," IEEE Transactions on Magnetics, vol. 51, no. 5, pp. 1-8, 2015.
[19]J. Cros and P. Viarouge, "Synthesis of High Performance PM Motors with Concentrated Windings," IEEE Transactions on Energy Conversion, vol. 17, no. 2, pp. 248-253, 2002.
[20]B. Wu, Y. Li, D. Zhu, and Y. Qin, "Optimal Design of a High Power Density PM Motor with Discrete Halbach Array and Concentrated Windings," in 2011 International Conference on Electrical Machines and Systems, pp. 1-5.
[21]Y. Shen and Z. Q. Zhu, "Investigation of Permanent Magnet Brushless Machines Having Unequal-Magnet Height Pole," IEEE Transactions on Magnetics, vol. 48, no. 12, pp. 4815-4830, 2012.
[22]Z. P. Xia, Z. Q. Zhu, and D. Howe, "Analytical Magnetic Field Analysis of Halbach Magnetized Permanent-magnet Machines," IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 1864-1872, 2004.
[23]T. Zhang, X. Ye, L. Mo, and Q. Lu, "Electromagnetic Performance Analysis on the Bearingless Permanent Magnet Synchronous Motor With Halbach Magnetized Rotor," IEEE Access, vol. 7, pp. 121265-121274, 2019.
[24]F. Zhang, X. Ju, and H. Liu, "Electromagnetic Design of 5MW Dual-stator Brushless Doubly-fed Generator with Hybrid Rotor," in 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 832-836.
[25]F. Zhang, T. Tong, and H. Liu, "Design and Analysis of 50KW Dual-stator Brushless Doubly-fed Generator for Wind Turbine," in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5.
[26]Y. Li, D. Bobba, and B. Sarlioglu, "Design and Optimization of a Novel Dual-Rotor Hybrid PM Machine for Traction Application," IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1762-1771, 2018.
[27]A. Darabi, H. Tahanian, S. Amani, and M. Sedghi, "An Experimental Comparison of Disc-Type Hysteresis Motors with Slotless Magnetic Stator Core," IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4642-4652, 2017.
[28]Y. Yeh, M. Hsieh, and D. G. Dorrell, "Different Arrangements for Dual-Rotor Dual-Output Radial-Flux Motors," IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 612-622, 2012.
[29]Y. Li, D. Bobba, and B. Sarlioglu, "A Novel Dual-rotor Hybrid Machine with Synchronous Reluctance and Surface Permanent Magnet Rotors," in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1-8.
[30]L. Jian and K. T. Chau, "A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays," IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 319-328, 2010.
[31]S. Jang, D. You, K. Ko, and S. Choi, "Design and Experimental Evaluation of Synchronous Machine Without Iron Loss Using Double-Sided Halbach Magnetized PM Rotor in High Power FESS," IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4337-4340, 2008.
[32]A. R. Abdullah, N. Bahari, M. Abu Hassan, and M. Sabri, "Efficiency Comparison of Trapezoidal and Sinusoidal Method for Brushless DC Motor Drive," Applied Mechanics and Materials, vol. 785, pp. 248-252, 2015.
[33]F. Li, W. Yao, and K. Lee, "Quantitative Characteristic Comparison between Sensorless Six Step and Field Oriented Control Methods for Permanent Magnet Brushless DC Motors," in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1881-1885.
[34]M. Pacas, "Sensorless Drives in Industrial Applications," IEEE Industrial Electronics Magazine, vol. 5, no. 2, pp. 16-23, 2011.
[35]P. L. Jansen and R. D. Lorenz, "Transducerless Position and Velocity Estimation in Induction and Salient AC Machines," IEEE Transactions on Industry Applications, vol. 31, no. 2, pp. 240-247, 1995.
[36]M. W. Degner and R. D. Lorenz, "Using Multiple Saliencies for the Estimation of Flux, Position, and Velocity in AC Machines," in IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, vol. 1, pp. 760-767 vol.1.
[37]M. J. Corley and R. D. Lorenz, "Rotor Position and Velocity Estimation for a Salient-pole Permanent Magnet Synchronous Machine at Standstill and High Speeds," IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 784-789, 1998.
[38]Y. Yoon, S. Sul, S. Morimoto, and K. Ide, "High Bandwidth Sensorless Algorithm for AC Machines Based on Square-wave Type Voltage Injection," in 2009 IEEE Energy Conversion Congress and Exposition, pp. 2123-2130.
[39]S. Yang, S. Yang, and J. H. Hu, "Design Consideration on the Square-Wave Voltage Injection for Sensorless Drive of Interior Permanent-Magnet Machines," IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 159-168, 2017.
[40]H. Kim, M. C. Harke, and R. D. Lorenz, "Sensorless Control of Interior Permanent Magnet Machine Drives with Zero-phase-lag Position Estimation," in Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), vol. 3, pp. 1661-1667 vol.3.
[41]S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, "Sensorless Control Strategy for Salient-pole PMSM Based on Extended EMF in Rotating Reference Frame," IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1054-1061, 2002.
[42]B.-H. Bae, S.-K. Sul, J.-H. Kwon, and J.-S. Byeon, "Implementation of Sensorless Vector Control for Super-high-speed PMSM of Turbo-compressor," IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 811-818, 2003.
[43]G.-R. Chen, S.-C. Yang, and K. Li, "Position Sensing of Permanent Magnet Machine Position Sensorless Drive at High Speed with Low Sample Over Rotor Operating Frequency Ratio," in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), pp. 1205-1209.
[44]J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, "Inverter Nonlinearity Effects in High-frequency Signal-injection-based Sensorless Control Methods," IEEE Transactions on Industry Applications, vol. 41, no. 2, pp. 618-626, 2005.
[45]J.-W. Choi and S.-K. Sul, "A New Compensation Strategy Reducing Voltage/current Distortion in PWM VSI Systems Operating with Low Output Voltages," IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1001-1008, 1995.
[46]M. Kim, S. Sul, and J. Lee, "Compensation of Current Measurement Error for Current-Controlled PMSM Drives," IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3365-3373, 2014.
[47]H. Jung, S. Hwang, J. Kim, C. Kim, and C. Choi, "Diminution of Current-Measurement Error for Vector-Controlled AC Motor Drives," IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1249-1256, 2006.
[48]R. W. Hejny and R. D. Lorenz, "Evaluating the Practical Low-Speed Limits for Back-EMF Tracking-Based Sensorless Speed Control Using Drive Stiffness As a Key Metric," IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1337-1343, 2011.
[49]X. Huang, Q. Tan, L. Li, J. Li, and Z. Qian, "Winding Temperature Field Model Considering Void Ratio and Temperature Rise of a Permanent-Magnet Synchronous Motor with High Current Density," IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2168-2177, 2017.
[50]B. Chen, W. Yao, F. Chen, and Z. Lu, "Parameter Sensitivity in Sensorless Induction Motor Drives with the Adaptive Full-Order Observer," IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4307-4318, 2015.
[51]S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, "Sensorless Control of Synchronous Reluctance Motors Based on Extended EMF Models Considering Magnetic Saturation With Online Parameter Identification," IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1264-1274, 2006.
[52]S. Yang and K. Lin, "Automatic Control Loop Tuning for Permanent-Magnet AC Servo Motor Drives," IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1499-1506, 2016.
[53]Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, "Performance Improvement of Sensorless IPMSM Drives in a Low-Speed Region Using Online Parameter Identification," IEEE Transactions on Industry Applications, vol. 47, no. 2, pp. 798-804, 2011.
[54]G. Wang, R. Yang, and D. Xu, "DSP-Based Control of Sensorless IPMSM Drives for Wide-Speed-Range Operation," IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 720-727, 2013.
[55]S. Yang and Y. Hsu, "Full Speed Region Sensorless Drive of Permanent-Magnet Machine Combining Saliency-Based and Back-EMF-Based Drive," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1092-1101, 2017.
[56]J. Bu, L. Xu, T. Sebastian, and B. Liu, "Near-zero Speed Performance Enhancement of PM Synchronous Machines Assisted by Low-cost Hall Effect Sensors," in APEC 1998 Thirteenth Annual Applied Power Electronics Conference and Exposition, vol. 1, pp. 64-68 vol.1.
[57]A. Yoo, S. Sul, D. Lee, and C. Jun, "Novel Speed and Rotor Position Estimation Strategy Using a Dual Observer for Low-Resolution Position Sensors," IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2897-2906, 2009.
[58]F. G. Capponi, G. D. Donato, L. D. Ferraro, O. Honorati, M. C. Harke, and R. D. Lorenz, "AC Brushless Drive with Low-resolution Hall-effect Sensors for Surface-mounted PM Machines," IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 526-535, 2006.
[59]M. C. Harke, G. D. Donato, F. G. Capponi, T. R. Tesch, and R. D. Lorenz, "Implementation Issues and Performance Evaluation of Sinusoidal, Surface-Mounted PM Machine Drives With Hall-Effect Position Sensors and a Vector-Tracking Observer," IEEE Transactions on Industry Applications, vol. 44, no. 1, pp. 161-173, 2008.
[60]T. R. Tesch and R. D. Lorenz, "Disturbance Torque and Motion State Estimation Using Low Resolution Position Interfaces," in Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 2, pp. 917-924.
[61]Z. Q. Zhu, M. L. M. Jamil, and L. J. Wu, "Influence of Slot and Pole Number Combinations on Unbalanced Magnetic Force in PM Machines with Diametrically Asymmetric Windings," IEEE Transactions on Industry Applications, vol. 49, no. 1, pp. 19-30, 2013.
[62]G. Scelba, G. D. Donato, G. Scarcella, F. G. Capponi, and F. Bonaccorso, "Fault-Tolerant Rotor Position and Velocity Estimation Using Binary Hall-Effect Sensors for Low-Cost Vector Control Drives," IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3403-3413, 2014.
[63]B. Dehez, F. Baudart, and Y. Perriard, "Analysis of a New Topology of Flexible PCB Winding for Slotless BLDC Machines," in 2014 International Conference on Electrical Machines (ICEM), pp. 1963-1969.
[64]J. Zou, X. Chen, J. Hu, and Y. Xu, "Design of a Novel Flywheel Reaction Torque Measurement System Based on Disturbance Observer," in 2009 International Conference on Electrical Machines and Systems, pp. 1-4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top