跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李鎬丞
研究生(外文):Hao-Chen Lee
論文名稱:Ti49.2Ni49.3Fe1.5形狀記憶合金塊材之超彈性與彈熱效應研究
論文名稱(外文):Research on the Pseudoelasticity and Elastocaloric Effect of Ti49.2Ni49.3Fe1.5 Shape Memory Alloy
指導教授:陳志軒陳志軒引用關係
指導教授(外文):Chih-Hsuan Chen
口試委員:吳錫侃林新智鄭憶中
口試委員(外文):Shyi-Kaan WuHsin-Chih LinI-Chung Cheng
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:132
中文關鍵詞:TiNiFe形狀記憶合金時效析出應力循環彈熱效應
外文關鍵詞:TiNiFe shape memory alloyheat treatmentstress cycleprecipitation hardeningelastocaloric effect
DOI:10.6342/NTU202002632
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對Ti49.2Ni49.3Fe1.5形狀記憶合金塊材進行研究,探討時效處理及應力循環對於形狀記憶合金之變態溫度與彈熱效應的影響,以及訓練後試片於不同操作溫度下之彈熱效應。經時效50小時與150小時之試片皆產生Ti3Ni4析出物,前者析出物大小平均為75nm,而後者則為140nm。以400°C時效處理150小時,之後經過900MPa應力訓練之h150X900試片,擁有最良好的應力循環穩定性,其於訓練過程中應變衰退量為實驗試片中最小,且DSC曲線之峰值溫度隨應力循環的變化幅度也皆最小。從彈熱效應的結果中顯示,h150X900試片的升溫衰減率為試片中最低,因為於時效處理時產生之Ti3Ni4析出物具有析出強化效果,能有效阻擋應力循環時所產生之差排,且以較小的應力進行訓練,材料內部導入的差排較少,性質劣化較不嚴重,因此能提高循環穩定性。反之,時效50小時試片之析出強化效果不如時效150小時者,若以較大應力進行訓練,則容易產生塑性變形,因此h50X1200試片於訓練後性質劣化最為嚴重。於-40°C~80°C的變溫彈熱效應測試中,試片的升/降溫變化量及應變皆有隨測試溫度下降而上升的趨勢,而h150X1200試片於各溫度下擁有最大溫度變化量及應變量,顯示時效150小時具更佳析出強化效果,而以較大的應力進行測試,能誘發更多麻田散體相變態,彈熱效應所產生的溫度變化量也較多。若同樣以900MPa測試h150X1200及h150X900試片,則h150X1200溫度變化量及應變皆不及h150X900試片,顯示在訓練過程中,以較大應力進行訓練容易於材料內部產生差排,導致塑性變形,進而影響到性質穩定後的彈熱效應表現;而同樣以1200MPa測試h150X1200及h150X900試片,則h150X900會因訓練時應變硬化程度不足,故承受較大之1200MPa應力時無法於高溫抵抗塑性變形,造成h150X900試片於高溫時展現的彈熱效應不及h150X1200試片。
In this study, the effects of heat treatment and stress cycles on transformation temperatures and elastocaloric effect of Ti49.2Ni49.3Fe1.5 shape memory alloy were investigated. Ti3Ni4 precipitations could be formed after 50hr and 150hr heat treatments at 400 °C. The average size of the Ti3Ni4 precipitations was 75nm for the former and was 140nm for the later one. The specimen h150X900, which was heat-treated at 400°C for 150hr and then trained at 900MPa, had the best stability under stress cycles. It experienced the smallest decay of deformation strain during the 500 training cycles, so did its transformation peak temperatures measured by DSC. This feature originated from the strengthening effect of Ti3Ni4 precipitations, which effectively hinder dislocations produced during stress cycles. On the other hand, the strengthening effect of the 50hr treated sample was less than that of the 150hr one. Besides, if a larger stress, 1200 MPa, was employed to train the 50hr sample, plastic deformation was introduced more easily, causing the properties of h50X1200 sample decayed rapidly.
The elastocaloric effect of the trained samples was tested between -40 °C to 80 °C. Both the deformation strain and ΔT(heating/cooling) rose when the testing temperature decreased. The h150X1200 sample had the most substantial deformation strain and temperature change at this temperature range. Because of the 150hr treated sample had a better strengthening effect, testing at 1200MPa would cause less plastic deformation and induce more martensite transformation, which resulted in a larger temperature change during elastocaloric effect. If both the h150X1200 and h150X900 samples were tested under 900 MPa, the temperature change and deformation strain of the h150X1200 were less than those of the h150X900 one. This feature revealed that fewer martensitic transformation could be induced when a smaller triggering stress was used, owing to more dislocations were introduced during the training process with 1200 MPa. However, if both samples were tested under 1200MPa, the strain hardening effect of h150X900 was not enough, it would cause plastic deformation at the high-temperature end, exhibiting a worse elastocaloric performance than that of the h150X1200 one in high-temperature environments.
目錄
摘要 i
Abstract ii
目錄 iv
第一章 前言 1
第二章 文獻探討 2
2-1形狀記憶合金簡介 2
2-2形狀記憶合金之特性 3
2-2-1彈熱型麻田散體相變態 3
2-2-2 形狀記憶效應 5
2-2-3 擬/超彈性(psuedoelasticity, PE) 6
2-3 TiNi基形狀記憶合金 8
2-4應力應變循環 10
2-5熱機處理對TiNi基SMA之影響 11
2-6彈熱效應簡介 12
2-6-1 疲勞強度之於彈熱效應 13
2-6-2 應變量對彈熱效應的影響 13
2-6-3 應變速率對彈熱效應的影響 14
2-6-4 彈熱效應之可用溫度區間 15
2-6-5 拉伸與壓縮模式之於彈熱效應 15
2-6-6 方位對彈熱效應的影響 16
第三章 實驗方法 34
3-1 合金配置與熔煉 34
3-2 時效處理 35
3-3 DSC量測 35
3-4 EBSD晶體方位分析 36
3-5 硬度測試 36
3-6 TEM觀察 37
3-7 應力循環測試 37
3-8 試片超彈性訓練與彈熱效應 37
3-9 不同溫度下之彈熱效應 38
第四章 合金之時效處理 44
4-1 不同時效時間之DSC量測結果 44
4-2 穿透式電子顯微鏡(TEM)影像 46
4-3 EBSD 47
第五章 合金之應力循環 54
5-1 應力循環穩定性結果 54
5-1-1 時效150hr試片以1200MPa訓練之結果 54
5-1-2 時效150hr試片以900MPa訓練之結果 55
5-1-3 時效50hr試片以900MPa訓練之結果 56
5-1-4 時效50hr試片以1200MPa訓練之結果 57
5-1-5 TiNiFe合金壓縮訓練之綜合討論 58
5-2 試片於訓練時彈熱效應比較 61
5-3 試片於訓練時應變分布變化及紅外線影像 63
5-3-1 h150X1200試片的DIC應變分布及紅外線影像 63
5-3-2 h150X900試片的DIC應變分布及紅外線影像 63
5-3-3 h50X900試片的DIC應變分布及紅外線影像 64
5-3-4 h50X1200試片的DIC應變分布及紅外線影像 65
第六章 各試片於不同溫度下測試彈熱效應 98
6-1 h150X1200試片於不同溫度下之彈熱效應 98
6-2 h150X900試片於不同溫度下之彈熱效應 99
6-3 h50X900試片於不同溫度下之彈熱效應 100
6-4 h50X1200試片於不同溫度下之彈熱效應 101
6-5 彈熱效應總比較 102
6-6 同應力下測試不同試片之變溫彈熱效應 103
第七章 結論 125
參考文獻 127
[1] L. Mañosa, A. Planes, Materials with giant mechanocaloric effects: cooling by strength, Advanced Materials 29(11) (2017) 1603607.
[2] G.J. Pataky, E. Ertekin, H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl, Acta Materialia 96 (2015) 420-427.
[3] W. Goetzler, R. Zogg, J. Young, C. Johnson, Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies, Navigant Consulting Inc., prepared for US Department of Energy (2014).
[4] L.C. Chang, T.A. Read, Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase, JOM 3(1) (1951) 47-52.
[5] D.S. Lieberman, M.S. Wechsler, T.A. Read, Cubic to orthorhombic diffusionless phase change—experimental and theoretical studies of AuCd, Journal of Applied Physics 26(4) (1955) 473-484.
[6] W.J. Buehler, J.V. Gilfrich, R.C. Wiley, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi, Journal of applied physics 34(5) (1963) 1475-1477.
[7] C.M. Wayman, Shape memory alloys, MRS bulletin 18(4) (1993) 49-56.
[8] H. Kessler, W. Pitsch, On the nature of the martensite to austenite reverse transformation, Acta Metallurgica 15(2) (1967) 401-405.
[9] 淺談形狀記憶合金. 李芝媛、吳錫侃, 科儀新知第十六卷 6 (1995) 6.
[10] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948.
[11] K.E. A. Nagasawa, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect,, S.M.M. (1974)1055-1060.
[12] S.N. T. Saburi, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12)(1974) 1363-1367.
[13] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230.
[14] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298.
[15] T.A. Schroeder, C.M. Wayman, The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys, Acta Metallurgica 25(12) (1977) 1375-1391.
[16] M. Nishida, T. Honma, Effect of heat treatment on the all-round shape memory effect in Ti-5lat% Ni, Scripta metallurgica 18(11) (1984) 1299-1302.
[17] M. Nishida, C.M. Wayman, T. Honma, Electron microscopy studies of the all-around shape memory effect in a Ti-51.0 at.% Ni alloy, Scripta metallurgica 18(12) (1984) 1389-1394.
[18] T. Tadaki, Y. Nakata, K.i. Shimizu, K. Otsuka, Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy, T Jpn I Met 27(10) (1986) 731-740.
[19] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709.
[20] T. Honma, The Effect of Aging on the Spontaneous Shape Change and the All-Round Shape Memory Effect in Ni--Rich TiNi Alloy, Proceedings of the International Conference on Martensitic Transformations. ICOMAT-86, 1986, pp. 709-716.
[21] K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528.
[22] K. Otsuka, C.M. Wayman, P. Feltham, Reviews on the deformation behavior of materials, Felthman ed., Freund, Israel 2 (1977) 81.
[23] K.Otsuka, C.M. Wayman, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981).
[24] H. Okamoto, T.B. Massalski, Binary alloy phase diagrams, ASM International, Materials Park, OH, USA (1990).
[25] W.J. C.M. Wayman, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a, a.A.N.S.-. Memory: It's Physical Metallurgy Properties, (1972).
[26] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Physica status solidi (a) 5(2) (1971) 457-470.
[27] K.M. Knowles, D.A. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 29(1) (1981) 101-110.
[28] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of martensitic transformation in Ti-Ni single crystals, Acta Metallurgica 35(8) (1987) 2137-2144.
[29] M. Nishida, H. Ohgi, I. Itai, A. Chiba, K. Yamauchi, Electron microscopy studies of twin morphologies in B19' martensite in the Ti-Ni shape memory alloy, Acta Metall Mater 43(3) (1995) 1219-1227.
[30] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron microscopy study of twins in martensite in a Ti-50.0 at% Ni alloy, Materials Transactions, JIM 33(4) (1992) 354-359.
[31] H.C. Ling, R. Kaplow, Phase transitions and shape memory in NiTi, Metallurgical and Materials Transactions A 11(1) (1980) 77-83.
[32] C.M. Wayman, I. Cornelis, K. Shimizu, Transformation behavior and the shape memory in thermally cycled TiNi, Scripta Metallurgica 6(2) (1972) 115-122.
[33] F.E. Wang, B.F. DeSavage, W.J. Buehler, W.R. Hosler, The irreversible critical range in the TiNi transition, Journal of Applied Physics 39(5) (1968) 2166-2175.
[34] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, The premartensitic instability in near-equiatomic TiNi, Metall Trans 2(10) (1971) 2769-2781.
[35] O. Mercier, K.N. Melton, Y. De Préville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metallurgica 27(9) (1979) 1467-1475.
[36] H.C. Ling, K. Roy, Stress-induced shape changes and shape memory in the R and martensite transformations in equiatomic NiTi, Metallurgical Transactions A 12(12) (1981) 2101-2111.
[37] E. Goo, R. Sinclair, The B2 to R transformation in Ti50Ni47Fe3 and Ti49. 5Ni50. 5 alloys, Acta Metallurgica 33(9) (1985) 1717-1723.
[38] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation behaviour of a Ti50Ni47Fe3 alloy II. Subsequent premartensitic behaviour and the commensurate phase, Philosophical Magazine A 47(1) (1983) 31-62.
[39] Y. Yamabe-Mitarai, R. Arockiakumar, A. Wadood, K.S. Suresh, T. Kitashima, T. Hara, M. Shimojo, W. Tasaki, M. Takahashi, S. Takahashi, Ti (Pt, Pd, Au) based high temperature shape memory alloys, Materials Today: Proceedings 2 (2015) S517-S522.
[40] H.C. Donkersloot, J.H.N. Van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition, Journal of the Less Common Metals 20(2) (1970) 83-91.
[41] C. Declairieux, A. Denquin, P. Ochin, R. Portier, P. Vermaut, On the potential of Ti50Au50 compound as a high temperature shape memory alloy, Intermetallics 19(10) (2011) 1461-1465.
[42] Y.C. Lo, S.-K. Wu, Compositional dependence of martensitic transformation sequence in Ti50Ni50− xPdx alloys with X≤ 15at%, Scripta metallurgica et materialia 27(8) (1992) 1097-1102.
[43] Y.C. Lo, S.K. Wu, C.M. Wayman, Transformation heat as a function of ternary Pd additions in Ti50Ni50− zPdz alloys with x: 20∼ 50 at.%, Scripta Metallurgica et Materialia 24(8) (1990) 1571-1576.
[44] S. Zuo, M. Jin, Y. Song, X. Jin, B19-phase transition and related tensile properties of Ti50Ni30Cu20 shape memory alloy doped with hydrogen, Journal of Intelligent Material Systems and Structures 27(18) (2016) 2517-2523.
[45] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Adv Eng Mater 10(6) (2008) 534-538.
[46] T. Tadaki, C.M. Wayman, Electron microscopy studies of martensitic transformations in Ti50Ni50− xCux alloys. Part II. Morphology and crystal structure of martensites, Metallography 15(3) (1982) 247-258.
[47] H. Sadiq, M.-B. Wong, R. Al-Mahaidi, X.L. Zhao, The effects of heat treatment on the recovery stresses of shape memory alloys, Smart Materials and Structures 19(3) (2010) 035021.
[48] S.H. Yoon, D.J. Yeo, Phase transformations of nitinol shape memory alloy by varying with annealing heat treatment conditions, International Society for Optics and Photonics, 2004,pp. 208-215.
[49] A. Ishida, M. Sato, A. Takei, K. Nomura, S. Miyazaki, Effect of aging on shape memory behavior of Ti-51.3 At. pct ni thin films, Metallurgical and Materials Transactions A 27(12) (1996) 3753-3759.
[50] J.D. Silva, S.C. Martins, N.I. de Azevedo Lopes, P.D. Resende, L.A. Santos, V.T.L. Buono, Effects of aging treatments on the fatigue resistance of superelastic NiTi wires, Materials Science and Engineering: A 756 (2019) 54-60.
[51] X. Wang, S. Kustov, K. Li, D. Schryvers, B. Verlinden, J. Van Humbeeck, Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at.% Ni alloy with micron-sized grains, Acta Materialia 82 (2015) 224-233.
[52] H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Materials Science and Engineering: A 314(1-2) (2001) 67-74.
[53] B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys, Materials Science and Engineering: A 202(1-2) (1995) 148-156.
[54] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, T. Fukuda, Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy, Acta Materialia 177 (2019) 169-177.
[55] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, Applied Physics Letters 101(7) (2012) 073904.
[56] M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton, Fabrication of NiTi through additive manufacturing: A review, Progress in Materials Science 83 (2016) 630-663.
[57] P. Sedmák, P. Šittner, J. Pilch, C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Materialia 94 (2015) 257-270.
[58] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, International Journal of Plasticity 27(2) (2011) 282-297.
[59] K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Crystal symmetry and the reversibility of martensitic transformations, Nature 428(6978) (2004) 55-59.
[60] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater 5(4) (2006) 286-290.
[61] K.E. Wilkes, P.K. Liaw, The fatigue behavior of shape-memory alloys, JOM 52(10) (2000) 45-51.
[62] Z. Yang, D. Cong, Y. Yuan, Y. Wu, Z. Nie, R. Li, Y. Wang, Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials, Materials Research Letters 7(4) (2019) 137-144.
[63] Y. Li, D. Zhao, J. Liu, Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy, Scientific reports 6 (2016) 25500.
[64] H. Ossmer, C. Chluba, M. Gueltig, E. Quandt, M. Kohl, Local evolution of the elastocaloric effect in TiNi-based films, Shape Memory and Superelasticity 1(2) (2015) 142-152.
[65] H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, M. Kohl, Evolution of temperature profiles in TiNi films for elastocaloric cooling, Acta materialia 81 (2014) 9-20.
[66] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys–role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Materialia 135 (2017) 158-176.
[67] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scripta Materialia 159 (2019) 62-67.
[68] H. Hou, J. Cui, S. Qian, D. Catalini, Y. Hwang, R. Radermacher, I. Takeuchi, Overcoming fatigue through compression for advanced elastocaloric cooling, MRS Bulletin 43(4) (2018) 285-290.
[69] J. Chen, K. Zhang, Q. Kan, H. Yin, Q. Sun, Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling, Applied Physics Letters 115(9) (2019) 093902.
[70] F. Xiao, T. Fukuda, T. Kakeshita, Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4, Scripta Materialia 124 (2016) 133-137.
[71] F. Xiao, X. Liang, H. Chen, Z. Li, Z. Li, X. Jin, T. Fukuda, Orientation dependence of elastocaloric effect in an aged Ni-rich Ti-Ni alloy, Scripta Materialia 168 (2019) 86-90.
[72] J. Nei, K.-H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24.
[73] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu content on atomic positions of Ti50Ni50− xCux shape memory alloys based on density functional theory calculations, Metals 5(4) (2015) 2222-2235.
[74] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical transactions A 17(1) (1986) 115-120.
[75] I. Aaltio, T. Fukuda, T. Kakeshita, Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4 at% Fe content, Journal of Alloys and Compounds 780 (2019) 930-936.
[76] J.I. Kim, S. Miyazaki, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9 at.% Ni alloy, Acta Materialia 53(17) (2005) 4545-4554.
[77] J.-J. Shen, N.-H. Lu, C.-H. Chen, Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation, Materials Science and Engineering: A (2020) 139554.
[78] Y. Liu, G.S. Tan, Effect of deformation by stress-induced martensitic transformation on the transformation behaviour of NiTi, Intermetallics 8(1) (2000) 67-75.
[79] Y. Liu, D. Favier, Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi, Acta materialia 48(13) (2000) 3489-3499.
[80] S. Wang, K. Tsuchiya, L. Wang, M. Umemoto, Martensitic stabilization and defects induced by deformation in TiNi shape memory alloys, International Journal of Minerals, Metallurgy, and Materials 18(1) (2011) 66-69.
[81] J.P. Oliveira, F.M.B. Fernandes, N. Schell, R.M. Miranda, Martensite stabilization during superelastic cycling of laser welded NiTi plates, Materials Letters 171 (2016) 273-276.
[82] R. DeHoff, Thermodynamics in materials science, CRC Press2006.
[83] Y. Liu, A. Mahmud, F. Kursawe, T.-H. Nam, Effect of pseudoelastic cycling on the Clausius–Clapeyron relation for stress-induced martensitic transformation in NiTi, Journal of Alloys and Compounds 449(1-2) (2008) 82-87.
[84] 沈佳駿, Ti49. 6Ni50. 4 棒材, Ti48. 9Ni51. 1 及 Ti50Ni48Fe2 形狀記憶合金塊材之彈熱效應研究, 臺灣大學機械工程學研究所學位論文 (2019) 1-157.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top