跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏翰
研究生(外文):Po-Han Huang
論文名稱:DLP列印範圍延伸之探討
論文名稱(外文):Study on the Extension of DLP Printing Area
指導教授:單秋成單秋成引用關係
指導教授(外文):Chow-Shing Shin
口試委員:林志郎沈銘原
口試委員(外文):Chih-Lang LinMing-Yuan Shen
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:137
中文關鍵詞:數位光學處理八隅體微結構延伸列印範圍
外文關鍵詞:DLPOctet-truss lattice micro-structureExtension of printing range
DOI:10.6342/NTU202002795
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究企圖以較低的設備成本與較短的印製時間透過數位光學處理(Digital Light Processing, DLP)技術印製出八隅體微米級結構,本系統採用光固化上照式成型系統,搭配三軸步進移動平台以擴大延伸列印面積,印製出高層數的大面積微結構,並且修改平台移動路徑將印製時間大幅縮短,欲探討延伸結構面積是否會影響機械性質,以及改變八隅體結構的比例,比較不同尺寸比例會對其機械性質造成影響。
而在印製過程中,藉由改變曝光時間、樹脂調配、切層厚度等列印參數印製出不同的結構,以及分析印製過程中所碰到的問題,尤其印製2x2結構時,平台會往X-Y平面移動,進而增加影響印製結果的因素,實驗結果發現在印製高層數的2x2結構會產生黏附現象(Stiction),在中間接縫處結構因為表面張力不同而造成桿件扭曲變形。
印製完後測試八隅體結構之機械性質,發現延伸結構面積並不會影響抗壓強度;另一方面,改變單軸尺寸比例之結構會降低其機械性質的表現;最後,模擬結果與實驗結果定性相同,但定量不同,模擬結果之剛性大於實驗結果,原因為實際桿件成形方式與設計有所差異,導致實驗結果剛性較小。
This research attempts to print the octet-truss lattice microstructure by DLP technology with a lower equipment cost and a shorter printing time. This system employs top-down exposure stereo-lithography. By using a three-axis stepping motor platform to expand the printing area, this system can print microstructures in high levels. In addition, modifying the movement path can reduce the printing time effectively. The purpose of the research is to explore whether the extended structure will affect its mechanical properties, and comparing mechanical properties by changing the ratio of microstructures.
In the printing process, this research produced different structures by changing some parameters such as exposure time, resin formulation, and layer thickness which will influence the results. These factors will be discussed separately in the research, especially when it comes to 2x2 structures, the platform moves in X-Y plane which increases the variables that affect the structures. The results of the 2x2 structure occurs stiction problem, which causes the octet-truss to be deformed by different surface tension.
Testing mechanical properties will be the last step after printing structures. According to the compression testing, extending the area will not affect the compressive strength. On the other hand, changing the ratio of the octet-truss lattice microstructure can decrease its mechanical properties. Finally, the simulation result is qualitatively the same as the experimental result, but the quantitative is different. The simulation result of stiffness is better than the experiment result, because the forming of the actual truss between designing truss is different, which will decrease its stiffness.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 章節簡述 2
第二章 文獻回顧 3
2.1 積層製造技術 3
2.1.1 光固化成型技術 4
2.2 DLP光固化成型技術 5
2.2.1 DLP投影機 5
2.2.2 DMD成像晶片 6
2.2.3 DLP光固化上照式與下照式的比較 8
2.3 SLA光固化成型技術 10
2.4 微結構 12
2.4.1 八隅體桁架結構 12
2.5 大面積微結構技術 13
第三章 實驗設備 16
3.1 系統架構 16
3.1.1 投影機 16
3.1.2 顯微物鏡 22
3.1.3 CIS對焦系統 22
3.1.4 Arduino 31
3.1.5 步進馬達與驅動器 32
3.1.6 移動平台與校正 34
3.1.7 樹脂槽可調控式平台 39
3.2 相關設備 41
3.2.1 電子天平 41
3.2.2 超音波打碎機 42
3.2.3 立體顯微鏡 43
3.2.4 金相顯微鏡搭配相機 44
3.2.5 SEM電子顯微鏡 45
3.3 列印材料 46
3.3.1 光敏樹脂 46
3.3.2 Sudan I蘇丹紅一號 47
3.4 機械性質測試相關設備 48
3.4.1 Load Cell力量感測器 48
3.4.2 LVDT線性差動變壓器 51
第四章 實驗原理與方法 54
4.1 實驗原理 54
4.1.1 上照式DLP光固化原理 54
4.1.2 列印流程 55
4.2 列印結構設計 57
4.2.1 結構比例變化 58
4.3 過度固化處理 60
4.3.1 曝光時間 61
4.3.2 蘇丹調配 61
4.3.3 灰階修正 62
4.3.4 雜光處理 64
4.4 移動工作平台 66
4.4.1 G code 66
4.4.2 移動路徑 67
4.5 機械性質測試 69
第五章 實驗結果與討論 71
5.1 八隅體1x1結構 71
5.1.1 修改投影位置 71
5.1.2 底部成化不完整 73
5.1.3 Deep Black 1x1結構印製結果 75
5.1.4 Deep Black 1x1結構灰階修正 77
5.1.5 Ash Grey 1x1結構印製結果 80
5.1.6 Ash Grey 1x1結構灰階修正 82
5.1.7 1x1結構Y軸縮小印製結果 84
5.1.8 1x1結構X軸縮小印製結果 86
5.2 八隅體2x2結構 88
5.2.1 液面問題 88
5.2.2 結構接合問題 93
5.2.3 2x2結構印製結果 100
5.2.4 2x2結構灰階修正 109
5.3 八隅體結構機械性質測試 111
5.3.1 改變結構比例之強度測試 111
5.3.2 改變結構比例之剛性測試 113
5.3.3 改變面積之強度測試 116
5.3.4 改變面積之剛性測試 121
5.4 八隅體結構模擬分析 123
5.4.1 剛性模擬 123
5.5 綜合比較 126
5.5.1 改變結構比例之機械性質探討 126
5.5.2 改變面積之機械性質探討 126
5.5.3 實驗與模擬機械性質之探討 127
第六章 結論與未來展望 128
6.1 結論 128
6.2 未來展望 128
參考文獻 129
附錄 132
1.Moroni, G., Syam, D., and Petrò, S., Functionality-based Part Orientation for Additive Manufacturing, 2015.
2.Chua, C.K. and Leong, K.F., 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) of Rapid Prototyping Fourth Edition. World Scientific Publishing Company, 2014.
3.Taormina, G., et al., 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of applied biomaterials & functional materials, 2018. 16(3): p. 151-160.
4.SINH, N.P., 新型機電整合之多色3-D 列印機. 國立中央大學機械工程學系, 2018: p. 1-122.
5.Borrello, J., et al., 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Additive Manufacturing, 2018. 23: p. 374-380.
6.Melchels, F.P.W., Feijen, J., and Grijpma, D.W., A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-6130.
7.Hornbeck, L.J., Digital Light Processing for high-brightness high-resolution applications. Projection Displays III, 1997.
8.蔡福森, DLP投影機技術與産品動態. 光連: 光電產業與技術情報, 1998(18): p. 39-42.
9.Urey, H., Madhavan, S., and Brown, M., MEMS Microdisplays. Handbook of Visual Display Technology, 2012: p. 2067-2080.
10.Costa, C., et al., Modeling of video projectors in OpenGL for implementing a spatial augmented reality teaching system for assembly operations, 2019.
11.Liu, H. and Bhushan, B., Nanotribological characterization of digital micromirror devices using an atomic force microscope. Ultramicroscopy, 2004: p. 391-412.
12.Hornbeck, L.J, Projection displays and MEMS: timely convergence for a bright future. Micromachining and Microfabrication. Vol. 2640, 1995.
13.Hornbeck, L.J., From Cathode Rays to Digital Micromirrors-A History of Electronic Projection Display Technology. Texas Instruments Technical Journal, 1998: p. 7-46.
14.Gong, Y. and Zhang, S., Ultrafast 3-D shape measurement with an off-the-shelf DLP projector. Optics express, 2010. 18(19): p. 19743-19754.
15.Santoliquido, O., Colombo, P., and Ortona, A., Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 2019. 39(6): p. 2140-2148.
16.Lovo, J., et al., 3D DLP Additive Manufacturing : Printer and Validation, 2017.
17.Luo, R.C., Tzou, J.H., and Lee, W.Z., The development of LCD panel display based rapid prototyping system for advanced manufacturing. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation, 2000
18.Song, X., et al., Ceramic fabrication using Mask-Image-Projection-based Stereolithography integrated with tape-casting. Journal of Manufacturing Processes, 2015.
19.Bártolo, P.J., Stereolithography: materials, processes and applications. Springer Science & Business Media, 2011.
20.Stampfl, J. and Hatzenbichler, M., Additive Manufacturing Technologies. CIRP Encyclopedia of Production Engineering, 2014: p. 20-27.
21.Cherdo, L., The 13 best resin 3D printers (SLA/DLP/LCD) in 2020, 2020.
22.Ushijima, K., et al., An investigation into the compressive properties of stainless steel micro-lattice structures. Journal of Sandwich Structures & Materials, 2011. 13(3): p. 303-329.
23.Tancogne-Dejean, T., Spierings, A.B., and Mohr, D., Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 2016. 116: p. 14-28.
24.Deshpande, V.S., Fleck, N.A., and Ashby, M.F., Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 2001. 49(8): p. 1747-1769.
25.Zhao, X. and Zhang, C., Digital manufacturing system design for large area microstructure based on DLP projector. Journal of Theoretical and Applied Information Technology, 2013. 48: p. 490-495.
26.蘇柏向, 微米級積層製造系統大面積微結構曝光之研究. 國立臺灣科技大學機械工程學系, 2015: p. 1-73.
27.鄭濡賢, 以 DLP 進行 3D 列印製作大面積微米級結構. 國立臺灣大學機械工程學研究所學位論文, 2019: p. 1-105.
28.胡又仁, DLP 光致聚合樹脂剛性探討. 國立臺灣大學機械工程學研究所學位論文, 2018: p. 1-142.
29.Nelson, P., Geometric Optics for DLP. Texas Instruments, 2013.
30.Guissi, S., CMOS Image Sensors (CIS): Past, Present & Future, 2017.
31.Fan, Y.T., Peng, C.S., and Chu, C.Y., Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors. Applications of Digital Image Processing XXIII, 2000.
32.林軒邑, 以數位光學處理進行 3D 列印製作微米級結構. 國立臺灣大學機械工程學研究所學位論文, 2017: p. 1-129.
33.劉鎧毓, 八隅體桁架結構製作與強度探討. 國立臺灣大學機械工程學研究所學位論文, 2018: p. 1-120.
34.張昱家, 3D 列印微結構無電鍍鎳機械性質探討. 國立臺灣大學機械工程學研究所學位論文, 2019: p. 1-148.
35.Martino, M., et al., Design of a linear variable differential transformer with high rejection to external interfering magnetic field. IEEE Transactions on magnetics, 2010. 46(2): p. 674-677.
36.黃道康, 光敏樹脂暨生物支架之雙光子吸收光致聚合製作參數與特性分析. 國立臺灣大學機械工程學研究所學位論文, 2014: p. 1-90.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top