跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴森奎
研究生(外文):Sen-Kui Lai
論文名稱:超音波輔助磨削氧化鋯及其應用於牙冠製作之研究
論文名稱(外文):Study of the Ultrasonic Vibration Assisted Grinding of Zirconia and its Application in Fabricating Dental Crown
指導教授:廖運炫
指導教授(外文):Yunn-Shiuan Liao
口試委員:蔡曜陽趙崇禮
口試委員(外文):Yao-Yang TsaiChoung-Lii Chao
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:111
中文關鍵詞:超音波輔助磨削氧化鋯牙冠切削力微克氏硬度四點抗彎試驗
外文關鍵詞:Ultrasonic Assisted GrindingZirconiaCrownCutting ForceMicro Vickers HardnessFour Point Bending Test
DOI:10.6342/NTU202002916
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來,陶瓷材料越來越興盛,尤其是氧化鋯陶瓷,其有優良的機械性質,更有安全的生物相容性,故常用於製作人工假牙。假牙製作過程中,首先加工氧化鋯粉塊,再將加工完的氧化鋯粉塊拿去烤爐做燒結,但因為各種環境濕度、溫度、壓力、水份、時間,因此不好掌控材料各部位的收縮率,導致形狀精度與原本有差異,還需要牙技師再做修飾,再上一層釉料,最後再燒結一次,即可完成牙冠假牙。為了避免收縮率的變異,因此有一種方法是直接加工已燒結的氧化鋯陶瓷,其硬度非常高,直接對其加工,雖然可以很好的掌握形狀精度,但因為材料太硬,會導致刀具磨耗嚴重,因此用超音波輔助磨削加工,可以用來加工硬度很高的氧化鋯陶瓷。在加工牙冠時,比起傳統加工,超音波輔助磨削不但可以減少軸向切削力24.4%,亦可減少進給方向切削力10.7%,鑽孔切削力下降20.5%。除了切削力的下降,在加工牙冠的過程中,換刀次數從原本的3次,減少為只換1次。磨棒的嚴重受損情況也不會出現,磨棒壽命得到提升。以超音波輔助磨削加工,會對工件表面形成一層加工變質層,表面硬度從原本未加工的1463HV上升到1620HV。其局部抗應變能力是上升的。但因為超音波振動會對表面造成較多且較深的凹坑,因此對於整體的抗彎強度是下降的,傳統磨削的工件抗彎強度為1670Mpa,以超音波輔助加工,抗彎強度降為1498.5Mpa。整體的抗應變能力是降低的。在加工表面時,超音波輔助加工下,因為切削力的下降,使得表面碎裂情況是比傳統磨削還要小且其表面有起伏較大的表面特徵,因此工件表面和釉料的接觸面積較大,故對於釉料的抓附力也比起傳統加工出來的表面還要強。
In recent years, ceramic materials have become more and more prosperous, especially zirconia ceramics, which have excellent mechanical properties and safer biocompatibility, so they are often used as materials for artificial dentures in dentistry. In the process of making dentures, the zirconia powder block is processed first, and then the processed zirconia powder block is taken to the oven for sintering, but because of various environmental humidity, temperature, pressure, moisture, time, so the shrinkage rate of each part of the material is not easy to control, resulting in a difference in shape accuracy from the original. It also requires the dental technician to make appearance size modification, then apply a layer of glaze, and finally sinter once to complete the crown denture. However, in order to avoid the variation of shrinkage, there is a method to directly process the sintered zirconia ceramics, which has a very high hardness, and directly processing it can well control the shape accuracy, but because the material is too hard, it will cause the grinding rod wears too seriously, so the ultrasonic grinding process can be used to process zirconia ceramics. When machining, compared with traditional machining, ultrasonic assisted grinding can not only reduce the axial cutting force by 24.4%, but also reduce the cutting force in the feed direction by 10.7%, and the drilling cutting force is 20.5%. In addition to the decrease in cutting force, the number of tool changes during the crown processing in the experiment was reduced from the original 3 times to only 1 time. Serious damage to the grinding rod will not occur, and the life of the grinding rod will be improved. Ultrasonic-assisted grinding processing will cause processing deterioration layer on the surface of the workpiece, and the surface hardness will increase from the original unprocessed 1463HV to 1620HV. Its local resistance to strain is rising. However, because ultrasound will cause more and deeper troughs on the surface, the bending strength of the workpiece is reduced. The bending strength of the traditionally grinding workpiece is 1670Mpa. With ultrasonic assisted processing, the bending strength is reduced to 1498.5 MPa. The overall strain resistance is reduced. When machining the surface, under ultrasonic-assisted machining, due to the reduction of cutting force, the surface chipping is smaller than that of traditional grinding and the glaze gripping force of the ultrasonic-assisted machining surface is stronger than the conventional one.
誌謝 1
摘要 2
Abstract 3
目錄 5
圖目錄 8
表目錄 12
第1章 緒論 14
1.1 研究背景與動機 14
1.2 文獻回顧 15
1.3 研究目的 23
1.4 本文架構 23
第2章 相關理論 24
2.1 陶瓷材料簡介 24
2.1.1 陶瓷切削特性 25
2.1.2 氧化鋯陶瓷 26
2.2 脆性材料裂紋生長機制 27
2.2.1 壓痕破壞理論 27
2.2.2 脆性材料臨界切深 34
2.2.3 裂紋尺寸模型 38
2.3 超音波振動輔助磨削機制 43
2.3.1 傳統超音波加工 46
2.3.2 旋轉超音波加工 47
2.3.3 單一磨粒運動軌跡分析 48
2.4 表面粗糙度 51
第3章 實驗設備與方法 57
3.1 實驗設備 57
3.1.1 小型五軸超音波加工機 57
3.1.2 量測儀器與設備 62
3.2 實驗材料 70
3.2.1 實驗刀具 70
3.2.2 實驗材料 71
3.3 實驗架構規劃 73
3.3.1 實驗流程 73
3.3.2 主要加工條件 76
第4章 實驗結果與討論 77
4.1超音波輔助磨削對加工效率的提升 77
4.2超音波輔助磨削對工件的影響 84
4.1.1 對工件表面結構對釉料附著程度差異 84
4.1.2 對工件表面硬度影響 86
4.1.3 對工件抗彎強度的影響 89
4.1.4 對工件邊緣碎裂的影響 93
4.3 超音波輔助磨削加工對形貌的影響 97
第5章 結論與未來展望 107
5.1 結論 107
5.2 未來展望 108
參考文獻 109
[1]R. W. Wood and A. L. Loomis, "The physical and biological effects of high-frequency sound-waves of great intensity," The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 4, no. 22, pp. 417-436, 1927.
[2]J. Farrer, "Improvements in or relating to cutting, grinding, polishing, cleaning
honing, or the like," UK Patent, no. 602801, 1948.
[3]C.K.C. Khoo, E. Hamzah, and I. Sudin, "A review on the rotary ultrasonic machining of advanced ceramics," Jurnal Mekanikal, vol. 25, no. 1, 2008.
[4]B. Lauwers, F. Bleicher, and P. Ten Haaf, "Investigation of the process-material interaction in ultrasonic assisted grinding of ZrO2 based ceramic materials," in Proc. of 4th CIRP Int. Conf. High Performance Cutting, vol 2, pp. 59-64, 2010.
[5]Y. Ahmed, W.L. Cong, and M.R. Stanco, "Rotary ultrasonic machining of alumina dental ceramics: a preliminary experimental study on surface and subsurface damages," Journal of manufacturing science and engineering, vol. 134, no. 6, p. 65401, 2012.
[6]S. J. Ng, D. T. Le, S. R. Tucker, and G. Zhang, "Control of machining induces edge chipping on glass ceramics," Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, Manufacturing Engineering Division, pp.229-236, 1996.
[7]彭英翰, 超音波輔助鑽孔碳化矽之研究," 臺灣大學機械工程學研究所碩士論文, 2014.
[8]柯皓恩, 超音波振動輔助磨削氧化鋯加工特性之研究, 臺灣大學機械工程學研究所學位論文, 2018.
[9]X. Xiao, K. Zheng, W. Liao, and H. Meng, "Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics," International Journal of Machine Tools and Manufacture, vol. 104, pp. 58-67, 2016.
[10]張治國, 旋轉超聲銑削鋁合金切削力及表面粗糙度機裡分析, 航空精密製造技術, 2013.
[11]鄭侃, 完全燒結氧化鋯牙科陶瓷材料的旋轉超聲波加工試驗研究, 人工晶體學報, 2013.
[12]D. Lu, H. Wang, W. Zhang, and Z. Yin, "Subsurface damage depth and distribution in rotary ultrasonic machining and conventional grinding of glass BK7," The International Journal of Advanced Manufacturing Technology, vol. 86, no. 9-12, pp. 2361-2371, 2016.
[13]P. Fernando, M. Zhang, Z. Pei, and W. Cong, "Intermittent and Continuous Rotary Ultrasonic Machining of K9 Glass: An Experimental Investigation," Journal of Manufacturing and Materials Processing, vol. 1, no. 2, pp. 1-11, 2017
[14]L.B. Zhang, L.J. Wang, X. Wang, "Study on vibration drilling of fiber reinforced plastics with hybrid variation parameters method," Composites Part A: Applied Science and Manufacturing, vol. 34, no. 3, pp. 237-244, 2003.
[15]包庭光, LCD 玻璃基板之圓弧路徑振動輔助劃線切割研究, 臺灣大學機械工程學研究所碩士論文, 2011.
[16]楊立婷, 陶瓷材料切削加工之切削力與聲射訊號分析研究, 中興大學機械工程學研究所碩士論, 2017.
[17]辛志杰, 超硬與難磨削材料加工技術實例, 化學工業出版社, 2013.
[18]于若軍, 現代陶瓷工程學, 全華科技圖書股份有限公司, 1985.
[19]中華民國陶業研究學會會刊, vol. 22, no. 2, pp. 11-24, 2002.
[20]J. Boussinesq, "Application of Potentials to the Study of Equilibrium and Motion of Elastic Solids," Gauthier-Villars, 1885.
[21]H. Hertz, D. E. Jones, and G. A. Schott, Miscellaneous paper, 1896.
[22]J.f. Yin, Q. Bai, and B. Zhang, "Methods for detection of subsurface damage: a review," Chinese Journal of Mechanical Engineering, vol. 31, no. 1, p. 41, 2018.
[23]T. Rouxel, "Driving force for indentation cracking in glass: composition, pressure and temperature dependence," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.373, no.2038, p. 20140140, 2015.
[24]B. Lawn and R. Wilshaw, "Indentation fracture: principles and applications," Journal of materials science, vol. 10, no. 6, pp. 1049-1081, 1975.
[25]P. Shore, and P. Leadbeater, "Advances in Ductile Mode Machining," Ceram. Bull, vol. 70, no. 10, pp. 1609-1611, 1991.
[26]A. Ruff, H. Shin, and C. J. Evans, "Damage processes in ceramics resulting from diamond tool indentation and scratching in various environments," Wear, vol. 181, pp. 551-562, 1995.
[27]T. G. Bifano, T. A. Dow, and R. O. Scattergood, "Ductile-regime grinding: a new technology for machining brittle materials," Transactions of the ASME, vol. 113, no. 2, pp. 184-189, 1991.
[28]B. Lawn, T. Jensen, and A. Aurora, "Brittleness as an indentation size effect," Joural of materials science, vol. 11, no. 3, pp. 573-575, 1976.
[29]陳建民, 鑽石線鋸切割碳化矽與氧化鋁陶瓷材料之特性研究, 清華大學動力機械工程學系研究所學位論文, 2003.
[30]許芳明, 硬脆材料微銑削加工特性之探討, 成功大學機械工程學系碩士論文, 2007.
[31]高鴻展, 精密陶瓷股小球材料之高溫製程, 表面機械加工及性質分析之硏究, 臺灣大學材料科學與工程學研究所碩士論文, 2000.
[32]B. Lawn and A. Evans, "A model for crack initiation in elastic/plastic indentation fields," Journal of Materials Science, vol. 12, no. 11, pp. 2195-2199, 1977.
[33]陳冠甫, 具鍍鋁薄膜矽基材料之研磨製程特徵研究, 成功大學機械工程學系碩士論文, 2008.
[34]賴耿陽, 超音波工學理論及實務, 復漢出版社, 1982.
[35]許坤明, 非傳統加工, 全華出版社 , 2010.
[36]Z. Pei, P. Ferreira, and M. Haselkorn, "Plastic flow in rotary ultrasonic machining of ceramics," Journal of Materials Processing Technology, vol. 48, no. 1-4, pp. 771-777, 1995.
[37]E. Bertsche, K. Ehmann, and K. Malukhin, "An analytical model of rotary ultrasonic milling," The International Journal of Advanced Manufacturing Technology, vol. 65, no. 9-12, pp. 1705-1720, 2013.
[38]Z. Pei, P. M. Ferreira, S. G. Kapoor, and M. Haselkorn, "Rotary ultrasonic machining for face milling of ceramics," International Journal of Machine Tools and Manufacture, vol. 35, no. 7, pp. 1033-1046, 1995.
[39]范光照, 精密量測, 高立出版社, 1998.
[40]王廷飛, 表面組織解說, 前程出版社, 1985.
[41]Y. Zhang and B. Lawn, "Novel zirconia materials in dentistry," Journal of dental research, vol. 97, no. 2, pp. 140-147, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top