跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉喬凱
研究生(外文):Chiao-Kai Yeh
論文名稱:電動車用鋰電池模組之可靠度分析與最佳化設計
論文名稱(外文):Reliability Analysis and Reliability-Based Design Optimization of Battery Module Used in Electric Vehicles
指導教授:吳文方
指導教授(外文):Wen-Feng Wu
口試委員:陳湘鳳詹魁元
口試委員(外文):Shana SmithKuei-Yuan Chan
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:80
中文關鍵詞:電動車單電池電池模組通用生成函數可靠度最佳化
外文關鍵詞:electric vehiclesbattery cellbattery moduleuniversal generating functionreliabilityoptimization
DOI:10.6342/NTU202003003
相關次數:
  • 被引用被引用:2
  • 點閱點閱:486
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
隨著鋰離子電池技術與電動車產業的迅速發展,車用電池模組(battery module)之可靠度分析與設計逐漸成為備受注目的研究課題,原因在於電池模組昂貴,占現今電動車總成本三分之一以上,其失效所帶來的風險更不可輕忽。本研究將車用電池模組視為由多顆單電池(battery cell)組成的系統,先依計算流體力學之三維紊流模型,模擬獲得模組運作受熱時之溫度場,而後探討溫度場內不同位置所在各單電池之電量衰退情形。本研究考量單電池健康狀態評估之不確定性,將單電池與電池模組分別視為具有多狀態之隨機元件與隨機系統,藉由習知可靠度工程方法與通用生成函數,評估電池模組的可靠度。本研究特別探討離散多狀態隨機元件與系統通用生成函數之應用,比較離散狀態多寡對系統可靠度評估之影響。本研究最後以模組系統可靠度作為最佳化設計之目標函數,將各單電池在空間位置上之排列當作設計變數,透過粒子群演算法,獲得具最高可靠度之電池模組設計。本研究結果顯示,在有限空間限制下,將各單電池適當交錯排列並提供適度間隔,可有效提升模組的系統可靠度,最後達到最高可靠度之設計目標。
Abstract
Along with the rapid development of lithium-ion battery technology as well as the battery’s being used in electric vehicles (EVs), the reliability analysis and design of battery module have gradually become an important research issue. This study considers the battery module of an EV as a system consisting of multiple battery cells. When the EV is in cruise, spatial temperature distribution of the heated module is obtained by computational fluid dynamics (CFD) based on a 3D turbulence simulation model. The temperature affects the capacity degradation of individual cells located in different positions within the module. The uncertainty of capacity degradation is considered in particular and represented by multiple probability state of health (SOH) in this study. It results in multiple probability state of the battery module and hence its quantitative reliability. The universal generating function (UGF) is employed in the analysis, and how the discretization of UGF affects the estimation is investigated in detail. Within the framework of reliability-based design optimization (RBDO), this study also explores the most reliable spatial layout of battery cells within a module subject to certain given constraints. The result of case study indicates RBDO of battery module can really be achieved by the proposed method.
目錄
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 IX
1. 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文架構 4
2. 電池模型與數值計算方法 5
2.1 電池基本理論 5
2.1.1 鋰電池工作原理 6
2.1.2 電池模組與電池組 8
2.2 電池模型與數值計算模型 9
2.2.1 熱生成模型 9
2.2.2 數值計算模型 10
3. 可靠度與最佳化理論 13
3.1 可靠度基本理論 13
3.1.1 定義 14
3.1.2 機率分布函數 16
3.1.3 系統可靠度 18
3.1.4 多狀態系統 22
3.2 通用生成函數 23
3.2.1 矩生成函數與z轉換 23
3.2.2 通用生成函數理論 27
3.3 最佳化方法 32
3.3.1 最佳化理論概述 32
3.3.2 粒子群演算法 36
4. 案例分析與結果討論 40
4.1 電池模組模型與散熱模擬 40
4.1.1 基本假設 40
4.1.2 電池模組幾何模型 41
4.1.3 CFD模型邊界條件設定 42
4.1.4 CFD散熱模擬 43
4.2 電池電量衰退模型 48
4.3 可靠度分析 49
4.3.1 單電池健康狀態不確定性 49
4.3.2 傳統可靠度方法 51
4.3.3 通用生成函數法 53
4.3.4 電池品質對可靠度影響 66
4.4 最佳化設計 68
4.4.1 粒子群最佳化 69
4.4.2 最佳化分析與結果討論 71
5. 結論 75
參考文獻 77
參考文獻
[1]W. Diao, S. Saxena, and M. Pecht, ‘‘Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells,’’ Journal of Power Sources, Vol. 453, Sep. 2019.
[2]Z. Liu, C. M. Tan, and F. Leng, “A reliability-based design concept for lithium-ion battery pack in electric vehicles,” Reliability Engineering and System Safety, Vol. 134, pp. 169-177, Feb. 2015.
[3]Y. Cui, C. Du, G. Yin, Y, Gao, L. Zhang, T. Guan, L. Yang, and F. Wang, “Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge,” Journal of Power Sources, Vol. 146, pp. 123-132, Apr. 2015.
[4]J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, and P. Finamore, “Cycle-life model for graphite-LiFePO4 cells,” Journal of Power Sources, Vol. 196, Issue. 8, pp. 3942-3948, Apr. 2011.
[5]M. Ecker, N. Nieto, S. Kabitz, J. Schmalstieg, H. Blanke, A. Warnecke, and D. U. Sauer, “Calendar and cycle life study of Li (NiMnCo)O2-based 18650 lithium-ion batteries,” Journal of Power Sources, Vol. 248, pp. 839-851, Feb. 2014.
[6]D. I. Stroe, M. Swierczynski, A. I. Stan, R. Teodorescu, and S. J. Andreasen, “Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants,” IEEE Transactions on Industrial Electronics, Vol. 50, Issue. 6, pp. 4006-4017, Apr. 2014.
[7]M. Ecker, J. B. Gerschler, J. Vogel, S. Kabitz, F. Hust, P. Dechent, and D. U. Sauer, “Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data,” Journal of Power Sources, Vol. 215, pp. 248-257, Oct. 2012.
[8]S. Park and D. Jung, “Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle,” Journal of Power Sources, Vol. 227, pp. 191-198, Apr. 2013.
[9]M. Al-Zareer, I. Dincer, and M. A. Rosen, “Heat and mass transfer modeling and assessment of a new battery cooling system,” International Journal of Heat and Mass Transfer, Vol. 126, pp. 765-778, Nov. 2018.
[10]A. Lisnianski, I. Frenkel, and Y. Ding, Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers, Springer, 2010.
[11]Z. Tian, G. Levitin, and M. J. Zuo, “A joint reliability–redundancy optimization approach for multi-state series–parallel systems,” Reliability Engineering and System Safety, Vol. 94, No. 10, pp. 1568-1576, Oct. 2009.
[12]Q. Xia, Z. Wang, Y. Ren, B. Sun, D. Yang, and Q. Feng, “A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles,” Journal of Power Sources, Vol. 386, pp. 10-20, May 2018.
[13]Q. Xia, Z. Wang, Y. Ren, L. Tao, C. Lu, J. Tian, D. Hu, Y. Wang, Y. Su, J. Chong, H. Jin, and Y. Lin, “A modified reliability model for lithium-ion battery packs based on the stochastic capacity degradation and dynamic response impedance,” Journal of Power Sources, Vol. 423, pp. 40-51, May 2019.
[14]N. Yang, X. Zhang, G. Li, and D. Hua, “Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements,” Applied Thermal Engineering, Vol. 80, pp. 55-65, Apr. 2015.
[15]C. Ji, B. Wang, S. Wang, S. Pang, D. Wang, P. Qi, and K. Zhang, “Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy,” Applied Thermal Engineering, Vol. 157, Jul. 2019.
[16]X. Qian, D. Xuan, X. Zhao, and Z. Shi, “Heat dissipation optimization of lithium-ion battery pack based on neural networks,” Applied Thermal Engineering, Vol. 162, 114289, Nov. 2019.
[17]K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,” Applied Energy, Vol. 86, No. 9, pp. 1506-1511, Sep. 2019.
[18]M. Shahriari and M. Farrokhi, “Online state-of-health estimation of VRLA batteries using state of charge,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, pp. 191-202, Jan. 2013.
[19]S. Watanabe, M. Kinoshita, and K. Nakura, “Capacity fade of LiNi(1-x-y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1-x-y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test,” Journal of Power Sources, Vol. 247, pp. 412-422, Feb. 2014.
[20]S. Al-Hallaj and J. R. Selman, “Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications,” Journal of Power Sources, Vol. 110, pp. 341-348, Aug. 2002.
[21]R. Xiong, H. Li, and J. Zhou, Advanced Energy Storage Technologies and Their Applications (AESA), Energies, Feb. 2018.
[22]Y. A. Cengel and J. M. Cimbala, Fluid Mechanics Fundamentals and Applications, McGraw-Hill Inc., New York, 2013.
[23]C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill Inc., New York, 1997.
[24]G. Levitin, The Universal Generating Function in Reliability Analysis and Optimization, Springer, 2015.
[25]A. Lisnianski and G. Levitin, Multi-state System Reliability: Assessment, Optimization and Applications, World Scientific, 2003.
[26]劉惟信,機械最佳化設計,全華科技圖書股份有限公司,臺灣臺北,1996。
[27]C-Y Li, X Chen, and X-S Yi, “Reliability analysis of primary battery packs based on the universal generating function method,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability ,Vol. 223, No. 3, pp. 251-257, Sep. 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊