跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鼎鈞
研究生(外文):Ding-Jun Huang
論文名稱:非破壞檢測在碳纖維複材膠合接口完整性監測之應用
論文名稱(外文):Health monitoring single lap CNT-epoxy joints of CFRP by using Non-Destructive Testing
指導教授:單秋成單秋成引用關係
指導教授(外文):Chow-Shing Shin
口試委員:林志郎沈銘原
口試委員(外文):Chih-Lang LinMing-Yuan Shen
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:194
中文關鍵詞:單搭接膠合接口光纖光柵感測器碳纖維複合材料電壓監測結構完整性結構健康度偵測
外文關鍵詞:single lap jointoptical fiber gratingcarbon fiber reinforced plasticvoltage change measurementstructure health monitoring
DOI:10.6342/NTU202003510
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的研究目的為結合不同的非破壞檢測方法來監測膠合接口產生的局部損傷,達到監測結構完整性的效果。實驗的搭接物為熱壓成形之碳纖維強化複合材料(Carbon fiber reinforced plastics, CFRP)試片,黏膠為在環氧樹脂中混入奈米碳管調和而成的,具有導電性。藉由在膠合接口內內埋布拉格光纖光柵感測器(fiber Bragg grating sensors, FBG),量測頻譜並觀察頻譜的變化,以及在膠合接口表面布置多點鍍金圓孔排針作為電極來量測電壓變化,達到局部監測膠合接口破壞的效果,並以螢光液滲檢測法來呈現搭接面確實有產生破壞的位置。本研究從嘗試建立FBG是否偵測到膠合接口局部破壞的判斷準則開始,接著利用萬能試驗測試機(Material Testing System, MTS)對試片進行一系列的實驗,首先透過拉伸測試,證實量測多點排針電壓無法用來判斷膠合接口的局部破壞。在先拉伸測試後浸泡檢測液,再拉至試片斷裂的實驗中,證實觀察電壓變化可用來輔助判斷膠合接口是否已產生嚴重損傷。其次進行以拉伸至尚未偵測到破壞後疲勞測試與拉伸至偵測到破壞後疲勞測試,結論為拉伸測試至三根FBG皆沒偵測到破壞的情況下,膠合接口的健康度良好,反之在三根FBG皆偵測到破壞的情況下,膠合接口的破壞確實存在,需要立即進行修補。
本研究除了確立以內埋FBG來偵測膠合接口是否破壞的可行性之外,也提供了解決方案來達成監測膠合接口局部破壞位置的目的。此外,量測電壓變化的監測方法在以FBG監測方法來判斷膠合接口損傷的基礎上,達到了良好的輔助效果,結合了此兩種監測方法,能更有效提升系統監測膠合接口是否產生破壞的可靠性。
The purpose of this study is to use different Non-Destructive Testing methods to detect local damage inside the adhesive joint and to achieve the effect of monitoring the structural integrity. The material of the sheet in the experiment is made of carbon fiber reinforced plastics (CFRP) by thermoforming, and the adhesive is made of epoxy resin mixed with carbon nanotubes, which is conductive. By embedding fiber Bragg grating sensors (FBG) in the adhesive joint, it can measure the frequency spectrum. By arranging multi-point conductive pins on the surface of the adhesive joint as electrodes to measure the voltage change, it can achieve the effect of monitoring the local damage of the adhesive joint. The fluorescent penetrant testing method is used to show that there is indeed a damage position on the overlapping surface. This study starts by trying to establish the criteria for judging whether FBG has detected damage or not, and then a series of experiments were performed on the test pieces operated by Material Testing System(MTS). The pin voltage cannot be used to judge the local damage of the glued interface. First, through a tensile test, it is proved that measuring the multi-point pin voltage cannot be used to judge the local failure of the adhesive joint. In the experiment in which the test piece is firstly immersed in the tensile test and then stretch the test piece until it is broken, it is confirmed that the observation of the voltage change can be used to assist in judging whether the adhesive joint has been seriously damaged. Secondly, perform two kinds of experiments on the test piece, which were fatigue test after stretching until failure is detected and the fatigue test after stretching until failure is detected. The conclusion is that the health of the adhesive joint is good when three FBGs fails to detect failure under tensile test status. On the contrary, when the three FBGs detect damage, the damage of the adhesive joint does exist and needs to be repaired immediately.
In addition to establishing the feasibility of deploying the FBGs to detect whether the adhesive joint is damaged, this study also provides a solution to determine the damaged location of the adhesive joint. Furthermore, the voltage change plays a good auxiliary effect on the basis of using the FBG monitoring method to determine the damage of the adhesive joint, and it also effectively improves the reliability of the system to achieve the structural health monitoring.
目錄
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 XII
表目錄 XXI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 章節說明 3
第二章 文獻回顧 4
2.1 膠合接口 4
2.1.1 單搭接膠合接口 4
2.1.2 單搭接膠合接口製備參數 5
2.1.3 單搭接膠合接口之應力分布 6
2.1.4 疲勞測試 13
2.2 電壓監測法 15
2.2.1 奈米碳管 15
2.2.2 電阻監測應用於膠合接口 17
2.3 光纖光柵感測法 24
2.3.1 光纖基本構造 24
2.3.2 光纖光柵感測器原理 24
2.3.3 布拉格光纖光柵原理 25
2.3.4 光纖光柵感測器應用於膠合接口 30
第三章 實驗材料與設備 32
3.1 製備複合材料試片用材料 32
3.1.1 碳纖維預浸布 32
3.1.2 搭接劑 32
3.1.3 鍍金圓孔針座(排針) 33
3.1.4 排針加固劑 33
3.1.5 導電銀膠 34
3.1.6 多壁奈米碳管(Muti-wall carbon nanotube, MWCNT) 34
3.1.7 熱風循環烘箱 35
3.2 製備複合材料試片用設備 36
3.2.1 熱壓成型系統 36
3.2.2 鑽石砂輪機 38
3.2.3 噴砂機 39
3.3 調配搭接劑用設備 40
3.3.1 電磁加熱攪拌器 40
3.3.2 超音波打碎機 40
3.3.3 高速均質機 41
3.4 光纖相關設備 42
3.4.1 光纖切割機 42
3.4.2 光纖熔接機 43
3.4.3 光循環器 43
3.4.4 寬頻光源 44
3.4.5 光頻譜分析儀(Optical Spectrum Analyzer, OSA) 44
3.4.6 NI-GPIB-USB-HS 傳輸線 45
3.4.7 筆式可視故障探測儀 46
3.4.8 布拉格光纖光柵 46
3.5 膠合接口健康度監測相關設備 47
3.5.1 多功能I/O介面卡(NI-6009) 47
3.5.2 多功能I/O介面卡(NI-6215) 48
3.5.3 電源量測儀器 48
3.5.4 萬能材料試驗機 (Material Testing System, MTS) 49
3.6 液滲檢測相關設備(Penetrant testing) 50
3.6.1 螢光滲透劑 50
3.6.2 顯影劑 50
3.6.3 清潔劑 51
3.6.4 紫外光燈 51
3.6.5 恆溫恆濕箱 52
第四章 實驗方法與流程 53
4.1 試片命名系統 53
4.2 膠合接口內埋光柵之試片製作 54
4.2.1 製作碳纖維強化複合材料板材 54
4.2.2 碳纖維試片的製作 55
4.2.3 布拉格光柵的佈置 56
4.2.4 調配搭接劑進行搭接 57
4.3 電壓監測感測器佈置 59
4.3.1 電極佈置 59
4.3.2 電線焊接 60
4.3.3 以電性曲線判斷膠合接口破壞的準則 61
4.4 光纖光柵感測器監測膠合接口 63
4.4.1 實驗光路設置 63
4.4.2 定量分析頻譜之變化 64
4.4.3 感測器綜合線路設置 66
4.5 螢光液滲檢測法(Fluorescent Penetrant Testing) 67
4.5.1 螢光液滲檢測法步驟 67
4.5.2 改良式螢光液滲檢測法步驟 69
4.6 實驗流程 72
4.6.1 拉伸測試(C) 73
4.6.2 先拉伸測試後浸泡螢光檢測液,再拉至試片斷裂 75
4.6.3 疲勞試驗 75
4.6.4 拉伸至尚未破壞後進行疲勞測試 76
4.6.5 拉伸至破壞後進行疲勞測試 76
第五章 實驗結果與討論 77
5.1 試片強度一致性 77
5.2 頻譜的分析與判讀 77
5.2.1 背景光源抬升對Variation值的影響 78
5.2.2 以頻譜變化判斷膠合接口破壞的準則 80
5.2.3 頻譜分析小結 81
5.3 拉伸測試(C) 82
5.3.1 電性探討 82
5.3.2 頻譜探討 87
5.3.3 拉伸測試小結 90
5.4 改良式螢光液滲檢測法測試 92
5.4.1 試片浸泡檢測液的時間對膠合接口強度的影響 92
5.4.2 試片的烘烤條件對螢光檢測液乾燥程度的影響 93
5.4.3 螢光劑貫穿現象 96
5.4.4 改良式螢光液滲檢測法小結 97
5.5 先拉伸測試後浸泡螢光檢測液,再拉至試片斷裂 98
5.5.1 頻譜與電性探討 98
5.5.2 螢光液滲法檢測結果探討 100
5.5.3 先拉伸後浸泡螢光劑小結 107
5.6 疲勞試驗(Fatigue test) 114
5.6.1 基準疲勞壽命測定 114
5.6.2 內埋FBG之疲勞測試電性及頻譜探討 115
5.6.3 疲勞測試小結 120
5.7 拉伸至尚未偵測到破壞後進行疲勞測試 122
5.7.1 拉伸到尚未偵測到破壞 122
5.7.2 疲勞測試 126
5.7.3 螢光液滲檢測法結果 130
5.7.4 小結 132
5.8 拉伸至偵測到破壞後進行疲勞測試 135
5.8.1 拉伸到偵測到破壞 135
5.8.2 疲勞測試 139
5.8.3 螢光液滲法檢測結果 143
5.8.4 小結 145
第六章 結論與未來展望 151
6.1 結論 151
6.2 未來展望 152
參考文獻 153
附錄 156
附錄A: 拉伸測試 156
S5.C1-拉伸測試 157
S5.C5-拉伸測試 159
S5.C2-拉伸測試 161
附錄B: 先拉伸測試後接著浸泡螢光檢測液,再拉至試片斷裂 164
S8.C1-先拉伸測試後接著浸泡螢光檢測液,再拉至試片斷裂(第一階段拉伸至5300 N、第二階段拉伸至5600 N斷裂) 165
S8.C6-先拉伸測試後接著浸泡螢光檢測液,再拉至試片斷裂(第一階段拉伸至6200 N、第二階段拉伸至7672 N斷裂) 167
S10.C4-先拉伸測試後接著浸泡螢光檢測液,再拉至試片斷裂(第一階段拉伸至5400 N、第二階段拉伸至5074 N斷裂) 170
S8.C8-先拉伸測試後接著浸泡螢光檢測液,再拉至試片斷裂(第一階段拉伸至3800 N、第二階段拉伸至5600 N斷裂) 172
S8.C3-先拉伸測試後接著浸泡螢光檢測液,再拉至試片斷裂(第一階段拉伸至5200 N、第二階段拉伸至6906 N斷裂) 175
附錄C: 內埋FBG之疲勞測試(45%應力等級) 177
S6.F2-內埋FBG之疲勞測試(45%應力等級/101088次疲勞週期) 178
附錄D: 拉伸至尚未偵測到破壞後進行疲勞測試 179
S11.F2-拉伸至尚未偵測到破壞後進行疲勞測試(拉伸至:3300 N,疲勞壽命:120624週期) 180
S13.F1-拉伸至尚未偵測到破壞後進行疲勞測試(拉伸至:3800 N,疲勞壽命:216744週期) 183
附錄E: 拉伸至偵測到破壞後進行疲勞測試 185
S13.F2-拉伸至偵測到破壞後進行疲勞測試(拉伸至:4600 N,疲勞壽命:109576週期) 186
S13.F3-拉伸至偵測到破壞後進行疲勞測試(拉伸至:5200 N,疲勞壽命:46353週期) 188
S12.F2拉伸至偵測到破壞後進行疲勞測試(拉伸至:3900 N,疲勞壽命:90632週期) 190
S12.F3-拉伸至偵測到破壞後進行疲勞測試(拉伸至:4500 N,疲勞壽命:4060週期) 193
1.Gunnion, A.J. and I. Herszberg, Parametric study of scarf joints in composite structures. Composite structures, 2006. 75(1-4): p. 364-376.
2.Pires, I., et al., Performance of bi-adhesive bonded aluminium lap joints. International Journal of Adhesion and Adhesives, 2003. 23(3): p. 215-223.
3.Volkersen, O., Rivet strength distribution in tensile-stressed rivet joints with constant cross-section. Luftfahrforschung, 1938. 15(1): p. 41-47.
4.Kahraman, R., M. Sunar, and B. Yilbas, Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. Journal of materials processing technology, 2008. 205(1-3): p. 183-189.
5.Seong, M.-S., et al., A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum. Composite structures, 2008. 86(1-3): p. 135-145.
6.Da Silva, L.F., et al., Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. International Journal of Adhesion and Adhesives, 2009. 29(6): p. 621-632.
7.Goncalves, J., M. De Moura, and P. De Castro, A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives, 2002. 22(5): p. 357-365.
8.楊易叡, 光纖光柵在單搭接膠合接口完整性監測之應用. 臺灣大學機械工程學研究所學位論文, 2016(2016 年): p. 1-203.
9.Ishii, K., et al., Evaluation of the fatigue strength of adhesively bonded CFRP/metal single and single-step double-lap joints. Composites Science and Technology, 1999. 59(11): p. 1675-1683.
10.Ferreira, J., et al., Fatigue behaviour of composite adhesive lap joints. Composites science and technology, 2002. 62(10-11): p. 1373-1379.
11.Quaresimin, M. and M. Ricotta, Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Composites Science and Technology, 2006. 66(2): p. 176-187.
12.黃建盛, (科學焦點-物理-奈米碳管簡介)https://www.lungteng.com.tw/LungTengNet/HtmlMemberArea/publish/Newpaper/013/science/%E7%A7%91%E5%AD%B8%E7%84%A6%E9%BB%9E-%E7%89%A9%E7%90%86-%E5%A5%88%E7%B1%B3%E7%A2%B3%E7%AE%A1%E7%B0%A1%E4%BB%8B.pdf..
13.Lim, A.S., et al., Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. Composites Science and Technology, 2011. 71(9): p. 1183-1189.
14.Thostenson, E.T. and T.-W. Chou, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology, 2008. 19(21): p. 215713.
15.Gao, L., et al., Sensing of damage mechanisms in fiber‐reinforced composites under cyclic loading using carbon nanotubes. Advanced functional materials, 2009. 19(1): p. 123-130.
16.Highsmith, A.L., Edge replication for laminated composites, in Manual on experimental methods for mechanical testing of composites. 1989, Springer. p. 165-169.
17.Kwon, D.-J., et al., Damage sensing and fracture detection of CNT paste using electrical resistance measurements. Composites Part B: Engineering, 2016. 90: p. 386-391.
18.Sam-Daliri, O., et al., Impedance analysis for condition monitoring of single lap cnt-epoxy adhesive joint. International Journal of Adhesion and Adhesives, 2019. 88: p. 59-65.
19.Born, M. and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 2013: Elsevier.
20.沈育霖 and 單秋成, 光纖感測器原理及在複合材料上之應用. 工業安全衛生, 2005(187): p. 9-24.
21.Erdogan, T., Fiber grating spectra. Journal of lightwave technology, 1997. 15(8): p. 1277-1294.
22.Hill, K.O. and G. Meltz, Fiber Bragg grating technology fundamentals and overview. Journal of lightwave technology, 1997. 15(8): p. 1263-1276.
23.Lin, C.L., Opto-Mechanical Applications of Microstructured Materials. 2004, PhD thesis, Joseph Fourier University/National Taiwan University.
24.Bernasconi, A., M. Carboni, and L. Comolli, Monitoring of fatigue crack growth in composite adhesively bonded joints using Fiber Bragg Gratings. Procedia Engineering, 2011. 10: p. 207-212.
25.Canal, L.P., et al., Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors. Composite Structures, 2014. 112: p. 241-247.
26.陳佩嫈, 以光纖光柵感測器監測碳纖維複材經衝擊/疲勞破壞/貼片修補之缺陷發展. 臺灣大學機械工程學研究所學位論文, 2012(2012 年): p. 1-119.
27.程品捷, 以內埋式光纖光柵感測器監測膠合修補碳纖維複合材料衝擊損傷之應用. 臺灣大學機械工程學研究所學位論文, 2010.
28.黃昱豪, 電壓監測碳纖維複材膠合接口受拉伸與疲勞負載之應用. 臺灣大學機械工程學研究所學位論文, 2019:p. 81
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top