跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉修文
研究生(外文):Hsiu-Wen Liu
論文名稱:運用數位微鏡裝置縮小點擴散函數之研究
論文名稱(外文):Research on Narrowing the Point Spread Function Using DMD
指導教授:陳亮嘉
指導教授(外文):Liang-Chia Chen
口試委員:蕭金廷葉勝利蕭立人
口試委員(外文):Chin-Ting HsiaoSheng-Lih YehLi-Jen Hsiao
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:點擴散函數超解析技術繞射極限超像素數位微鏡裝置
外文關鍵詞:Point spread functionsuper resolutiondiffraction limitsuper pixelDMD
DOI:10.6342/NTU202003763
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技與工業技術發展,高科技產品如半導體、IC晶片製程奈米化,產品表面輪廓、特徵尺寸的量測精度需求亦隨之提升。在工業界線上自動化量測產業中,光學量測系統已被廣泛應用。然而傳統光學量測法如共焦顯微鏡、干涉量測術受繞射極限限制,橫向解析度約200奈米。為了超越繞射極限,科學家提出各種超解析技術,在提升解析度的研究上,超解析技術是未來重要的發展趨勢。
本研究結合超像素DMD方法與干涉技術,利用超像素DMD方法分別調制兩個光場的振幅與相位,經物鏡聚焦後得兩個點擴散函數,使點擴散函數干涉。其中調制光場將使破壞性干涉發生於點擴散函數外圍,縮小點擴散函數,提升光學解析度。與多數點擴散函數相關研究不同,除了調變入射光場振幅,本研究將同時調變光場的相位,並直接設計點擴散函數,經傅立葉轉換得到對應入射光場,而光場相位的調變提高了對應入射光場分布的自由度。本研究克服近場光學工作距離小,需要高精度控制的限制,也改善了部分遠場光學具有量測時間差、需在物品表面塗層的問題,同時運用了操作容易的DMD與可見光源,提出了新的超解析技術。
模擬流程已發展完整,從點擴散函數設計、入射光場計算與入射光場調制,最後驗證模擬結果以超像素DMD方法實踐的可行性。模擬結果在縮小點擴散函數的目標上以艾瑞盤第一暗圈大小為基準可達到改善18%的效果。
實驗系統已具備實現超像素DMD方法初步實驗裝置與光學系統構想,結合模擬結果與前期超像素DMD方法的實驗經驗,未來將以架設完整實驗裝置、驗證點擴散函數縮小的研究方法與模擬流程優化為發展目標。
With the development of industrial technology, high-tech products such as semiconductors and IC chip manufacturing processes are nano-scaled, and the requirements for measurement accuracy of product surface and feature dimensions have also increased. In the automated inline measurement industry, optical measurement systems have been widely used. However, traditional optical measurement methods such as confocal microscopy and interferometer are limited by the diffraction limit, and the lateral resolution is about 200nm. In order to surpass the diffraction limit, scientists have proposed various super-resolution technologies. In the research of improving resolution, super-resolution technology is an important development trend in the future.
The research combines the super-pixel DMD method and interference technology, and uses the super-pixel DMD method to modulate both the amplitude and phase of the two light fields. After focusing by the objective lens, two point spread functions can be obtained and interfere. Modulating the light field will cause destructive interference to occur at the periphery of the point spread function, reduce the size of the point spread function, and improve the optical resolution. Different from most researches related to point spread function, in addition to modulating the amplitude of the incident light field, the phase of the light field will be simultaneously modulated in the research. The point spread function will be directly designed, and the corresponding incident light field will be obtained through Fourier transform. The additional modulated parameter of phase distribution improves the variation of the incident light field distribution. The method overcomes the limitations of the small working distance and the need for high-precision control in near-field optics. It also prevents the disadvantages of the measurement time difference and the requirement of coating on the sample surface in some far-field optics. At the same time, it uses easy-to-operate DMD and visible light sources.
The simulation process of the method has been fully developed, from the point spread function design, the incident light field calculation and the incident light field modulation, and finally the feasibility of the simulation results to be realized by the super-pixel DMD method is verified. The simulation results of narrowing the point spread function can achieve 18% improvement based on the size of the first dark circle of Airy disk.
The experimental system has the preliminary experimental device for realizing the super-pixel DMD method and the optical system design. In the future, the optimization method of the simulation process and a complete experimental system are expected to be set up to verify the research method.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1 近場光學 5
2.1.1 近場掃描光學顯微鏡 5
2.1.2 微球體輔助光學顯微鏡 6
2.1.3 人造材料透鏡 7
2.2 遠場光學 7
2.2.1 受激放射耗乏顯微術 7
2.2.2 切換雷射模態顯微鏡 8
2.2.3 光吸收調制塗層 9
2.3 文獻回顧總結 10
第三章 研究方法 11
3.1 研究方法概述 11
3.2 點擴散函數設計 12
3.2.1 點擴散函數產生 13
3.2.2 點擴散函數強度與相位分布配合 16
3.3 入射光場設計 18
3.4 超像素DMD方法:入射光場調制 21
3.4.1 超像素DMD方法介紹 21
3.4.2 超像素DMD方法數學模型 23
3.5 小結 24
第四章 模擬 26
4.1 點擴散函數模擬與入射光場轉換 27
4.1.1 產生初始點擴散函數 27
4.1.2 初始點擴散函數相位調制與入射光場計算 28
4.1.3 實際點擴散函數與入射光場 32
4.2 點擴散函數模擬與入射光場轉換小結 35
4.2.1 點擴散函數設計參數 35
4.2.2 點擴散函數縮小效果 38
4.3 超像素DMD方法模擬 40
4.3.1 輸入 40
4.3.2 輸出 41
4.3.3 超像素DMD方法模擬誤差 42
4.4 超像素輸出干涉點擴散函數模擬 45
4.4.1 最終有效點擴散函數模擬 45
4.4.2 最終有效點擴散函數模擬縮小效果 47
4.5 小結 49
第五章 實驗系統 51
5.1 光學系統 51
5.2 實驗架構 52
5.3 研究方法實驗可行性討論 52
5.3.1 目標光場尺寸 53
5.3.2 超像素法解析度 53
5.3.3 超像素法誤差來源 53
第六章 結論與展望 56
6.1 結論 56
6.2 未來展望 57
參考文獻 58
[1]T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy, London: Academic Press, 1984.
[2]D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Applied Physics Letters, Vol. 44, pp. 651-653, 1984.
[3]E. H. Synge, “XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 6, pp. 356-362, 1928.
[4]A. Ash and G. Nichols, “Super-resolution aperture scanning microscope,” Nature, Vol. 237, 1972.
[5]U. Dürig, D. W. Pohl, and F. Rohner, “Near‐field optical‐scanning microscopy,” Journal Applied Physics, Vol. 59, pp. 3318-3327, 1986
[6]P. K. Upputuri and P. Manojit, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Optics Communications, Vol. 404, pp. 32-41, 2017.
[7]Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nature communications, Vol. 2, pp. 1-6, 2011.
[8]A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Applied Physics Letters, Vol. 101, 2012.
[9]M. Kim and R. Junsuk, “Metamaterials and imaging,” Nano Convergence, Vol. 2, 2015.
[10]S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics letters, Vol. 19, pp. 780-782, 1994.
[11]E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nature Photonics, Vol. 3, pp. 144-147, 2009.
[12]A. Nagarajan, L. P. Stoevelaar, F. Silvestri, M. Siemons, V. G. Achanta, S. M. B. Bäumer, and G. Gerini, “Reflection confocal nanoscopy using a super-oscillatory lens,” Optics Express, Vol. 27, pp. 20012-20027, 2019.
[13]H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Optics Express, Vol. 12, pp. 15912–15925, 2013.
[14]L. Thibon, M. Piché, and Y. De Koninck, “Resolution enhancement in laser scanning microscopy with deconVolution switching laser modes (D-SLAM),” Optics Express, Vol. 26, pp. 24881–24903, 2018.
[15]S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Optics Express, Vol. 22, pp. 17999–18009, 2014.
[16]L. Liu, Y. Gao, and X. Liu, “High-precision joint amplitude and phase control of spatial light using a digital micromirror device,” Optics Communications, Vol. 424, pp. 70-79, 2018.
[17]E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für mikroskopische Anatomie, Vol.9, pp. 413-468, 1873.
[18]L. Rayleigh, “On the capillary phenomena of jets.” Proceedings of the Royal Society of London, Vol. 29, pp. 71-97, 1879.
[19]R. Kowarsch, C. Geisler, A. Egner, and C. Rembe, “Superresolution reflection microscopy via absorbance modulation: A theoretical study,” Optics express, Vol. 26, pp. 5327-5341, 2018.
[20]A. M. Hamed, “Improvement of point spread function (PSF) using linear-quadratic aperture,” Optik, Vol. 131, pp. 838-849, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top