跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許煥坤
研究生(外文):Huan-Kun Hsu
論文名稱:人形機器人之節能步態生成、多目標全身控制與安全性
論文名稱(外文):Energy-saving Walking Pattern Generation, Multi-task Whole-body Control and Safety for Humanoid Robots
指導教授:黃漢邦黃漢邦引用關係
指導教授(外文):Han-Pang Huang
口試委員:宋開泰蔡清池林其禹程登湖
口試委員(外文):Kai-Tai SongChing-Chih TsaiChyi-Yeu LinTeng-Hu Cheng
口試日期:2020-07-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:160
中文關鍵詞:人形機器人浮體運動學質心動量矩陣錯誤偵測與診斷機器人健康指數
外文關鍵詞:humanoid robotfloating based kinematicscentroidal momentum matrixfault detection and diagnosisrobot health index
DOI:10.6342/NTU202003977
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
首先,藉由最小化由關節力矩,關節角度限制,關節角度速度限制所構成的成本函數,提出了一個質心高度軌跡最佳化的方法。質心高度軌跡的最佳化過程是採用了梯度下降法。由於最佳化的過程無法即時進行,本文提出了將機器人步伐切分為單元步的方式,並利用此方式建立對應各單步的質心高度軌跡資料庫,運用此資料庫可以線上即時生成所需的質心高度軌跡,用來使步態生成器得以生成節能步態。經過不同步速的實驗證明,與固定質心高度軌跡相比,由此方法生成的節能質心高度軌跡可以減少能量的消耗至14%,因此方法確實是有效的。
接著我們提出了基於二次規劃的整合型控制器,藉由比例-微分控制與線性二次狀態增量步態生成器等多種控制方法在機器人動量上的規劃,可確保機器人在執行任務期間的穩定性。除此之外,根據重心力矩樞軸 (Centroidal Moment Pivot, CMP),機器人可以算出所需要的水平補償力矩,並透過整合控制器進行補償來增加機器人行走的穩定性。
最後,我們為人形機器人提出了一套智慧型的錯誤偵測、診斷和健康評估系統。此系統使用主成分分析擷取感測器資訊並使用尼爾森法則 (Nelson rules) 進行線上的偵測,一旦偵測出異常現象,機器人會開始進行設定好的診斷動作,取得特徵並使用多類別支撐向量機來進行錯誤的診斷。另外,我們也設計了一個基於模糊邏輯的機器人健康指數產生器,可以用來量化機器人目前的健康狀態。接著將本系統套用在我們的人形機器人上進行測試,並且加入了幾個與老化相關的測試條件。
Firstly, a Center of Mass (COM) trajectory optimization method is proposed to minimize the cost function of joint torque, joint limit, and joint speed limit. The COM height trajectory is optimized by finding the derivative of the cost function with respect to the COM height offline. Then the proposed walking pattern generator builds the COM height trajectory database of different walking steps for online connection of a walking pattern. The walking pattern generator is verified by experiments and simulations of different step cycles with our humanoid robot, NINO, and it can clearly reduce the required joint torque of the robot while walking. In addition, compared with the fixed COM height trajectory, the energy consumption is reduced by 14% from the experimental results. Thus, the method succeeds in generating a more energy-saving walking pattern.
The control framework based on quadratic programming (QP) method is designed to keep the balance of the robot during task period by combing several controllers, including proportional-derivative (PD) control to regulate the task goal and the linear quadratic state incremental (LQSI) walking pattern generator to regulate the linear momentum rate change of the robot. Besides, according to the centroidal moment pivot (CMP) to calculate the compensatory horizontal angular momentum rate change, the walking stability is improved with unexpected disturbance.
Finally, an intelligent fault detection, diagnosis and health evaluation system for real humanoid robots is proposed. The system uses principal component analysis based statistical process control with Nelson rules for online fault detection. Several suitable Nelson rules are chosen for sensitive detection. When a variation is detected, the system performs a diagnostic operation to acquire features of the time domain and the frequency domain from the motor encoder and motor torque sensor for fault diagnosis with a multi-class support vector machine. Additionally, a fuzzy logic based robot health index generator is proposed for evaluating the health of the robot, and the generator is an original design to reflect the health status of the robot. Finally, several aging-related faults are implemented on our humanoid robot, NINO, and the proposed system is validated effectively by the experimental results.
誌謝 i
摘要 iii
Abstract v
List of Tables xi
List of Figures xv
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Contributions 3
1.3 Organization of the Dissertation 5
Chapter 2 Basis of Humanoid Robot Control 9
2.1 Linear Quadratic State-Incremental Walking Pattern Generation 9
2.1.1 Dynamic Model of Humanoid Robots 9
2.1.2 Optimal Controller Design and ZMP/COM Pattern Generation 11
2.1.3 Walking Pattern Generator and Reference Trajectories 14
2.2 Floating-based Kinematics 16
2.3 Centroidal Momentum Matrix 21
2.4 Summary 27
Chapter 3 Real-time Optimal Energy-saving Walking Pattern Generation 29
3.1 Introduction 29
3.2 Optimal COM Height Trajectory 31
3.2.1 Cost Function 31
3.2.2 Procedure of Optimization 33
3.2.3 Derivatives of Newton-Euler Dynamics 35
3.2.4 Derivatives of Joint Limit Cost and Joint Speed Limit Cost 38
3.2.5 Derivatives of Kinematic Parameters with COM Jacobian 39
3.3 Real-time Generation of Optimal Walking Pattern 41
3.3.1 Walking Single Steps Design 42
3.3.2 Building the COM Height Trajectory Database 43
3.3.3 COM Height Trajectory Training Results 45
3.3.4 Online Optimal COM Height Trajectory Connection from Database 47
3.4 Summary 48
Chapter 4 Multi-task Control Framework 49
4.1 Introduction 49
4.2 Integrated QP Controller 52
4.2.1 Constraints 54
4.2.2 Objective Functions 60
4.2.3 QP Formulation 65
4.3 Summary 69
Chapter 5 Intelligent Fault Detection, Diagnosis and Health Evaluation for Humanoid Robots 71
5.1 Introduction 71
5.2 System Architecture 73
5.3 Fault Detection, Diagnosis and Health Evaluation 75
5.3.1 Fault Detection 75
5.3.2 Fault Diagnosis 82
5.3.3 Health Evaluation 84
5.4 Summary 88
Chapter 6 Simulations and Experiments 89
6.1 Humanoid Robot Platform and Simulation Environment 89
6.2 Simulations and Experiments of Real-time Optimal Energy-saving Walking Pattern Generation 91
6.2.1 Training Parameters 92
6.2.2 Experiments and Simulations 93
6.3 Simulations and Experiments of Multi-task Control Framework 105
6.3.1 Simulation 1 107
6.3.2 Simulation 2 112
6.3.3 Simulation 3 114
6.3.4 Simulation 4 117
6.3.5 Simulation 5 119
6.3.6 Simulation 6 122
6.3.7 Experiment 1 124
6.3.8 Experiment 2 128
6.3.9 Experiment 3 131
6.3.10 Experiment 4 134
6.4 Experiments of Intelligent Fault Detection, Diagnosis and Health Evaluation for Humanoid Robots 136
6.4.1 Experimental Settings 136
6.4.2 The Fault Detection Experiments 137
6.4.3 The Fault Diagnosis Experiments 140
6.4.4 The Health Evaluation Experiment 142
6.5 Summary 144
Chapter 7 Conclusions and Future Works 147
7.1 Conclusions 147
7.2 Future Works 148
References 151
Biography 159
[1]Y. Abe, M. Da Silva, and J. Popović, “Multiobjective Control with Frictional Contacts,” Proceeding of ACM SIGGRAPH Symposium on Computer Animation, San Diego, California, USA, pp. 249–258, 2007.
[2]D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette, “Visual Servoing in an Optimization Framework for the Whole-Body Control of Humanoid Robots,” IEEE Robotics and Automation Letters, Vol. 2, No. 2, pp. 608–615, 2017.
[3]K. H. Ahn and Y. Oh, “Walking Control of a Humanoid Robot via Explicit and Stable CoM Manipulation with the Angular Momentum Resolution,” Proceeding of IEEE International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2478–2483, 2006.
[4]K. Bouyarmane and A. Kheddar, “On Weight-Prioritized Multitask Control of Humanoid Robots,” IEEE Transactions on Automatic Control, Vol. 63, No. 6, pp. 1632–1647, 2018.
[5]F. Bullo and R. M. Murray, “Proportional Derivative (PD) Control on the Euclidean Group,” California Institute of Technology Technical Report, pp. 1–47, 1995.
[6]C.-H. Chang, “Humanoid Robot Push - Recovery Strategy based on CMP Criterion and Angular Momentum Regulation,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2014.
[7]J.-H. Chen, “Optimal Contact Wrench Controller for Humanoid Robots based on Floating Base Kinematics,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2016.
[8]F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, “Evaluating Reliance Level of a Virtual Metrology System,” IEEE Transactions on Semiconductor Manufacturing, Vol. 21, No. 1, pp. 92–103, 2008.
[9]B.-K. Cho, J.-H. Kim, and J.-H. Oh, “Online Balance Controllers for a Hopping and Running Humanoid Robot,” Advanced Robotics, Vol. 25, No. 9–10, pp. 1209–1225, 2011.
[10]C.-N. Cho, J.-T. Hong, and H.-J. Kim, “Neural Network Based Adaptive Actuator Fault Detection Algorithm for Robot Manipulators,” Journal of Intelligent & Robotic Systems, Vol. 95, No. 1, pp. 137–147, 2019.
[11]R. Cisneros, M. Benallegue, A. Benallegue, M. Morisawa, H. Audren, P. Gergondet, A. Escande, A. Kheddar, and F. Kanehiro, “Robust Humanoid Control Using a QP Solver with Integral Gains,” Proceeding of IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, pp. 7472–7479, 2018.
[12]R. Cisneros, M. Benallegue, M. Morisawa, and F. Kanehiro, “QP-based Task-space Hybrid / Parallel Control for Multi-contact Motion in a Torque-controlled Humanoid Robot,” Proceeding of IEEE-RAS International Conference on Humanoid Robots, Toronto, Canada, pp. 663–670, 2019.
[13]R. Cisneros, S. Nakaoka, M. Morisawa, K. Kaneko, S. Kajita, T. Sakaguchi, and F. Kanehiro, “Effective Teleoperated Manipulation for Humanoid Robots in Partially Unknown Real Environments: Team AIST-NEDO’s Approach for Performing the Plug Task during the DRC Finals,” Advanced Robotics, Vol. 30, No. 24, pp. 1544–1558, 2016.
[14]A. Escande, N. Mansard, and P. B. Wieber, “Hierarchical Quadratic Programming: Fast Online Humanoid-Robot Motion Generation,” International Journal of Robotics Research, Vol. 33, No. 7, pp. 1006–1028, 2014.
[15]R. Featherstone, Rigid Body Dynamics Algorithms, 1st Edition, New York: Springer US, 2008.
[16]S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-based Full Body Control for the DARPA Robotics Challenge,” Journal of Field Robotics, Vol. 32, No. 2, pp. 293–312, 2015.
[17]K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, 1st Edition, New York: McGraw-Hill Book Company, 1987.
[18]A. Goswami and V. Kallem, “Rate of Change of Angular Momentum and Balance Maintenance of Biped Robots,” Proceeding of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 3785–3790, 2004.
[19]R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt, “Walking Stabilization using Step Timing and Location Adjustment on the Humanoid Robot, Atlas,” Proceeding of IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, pp. 667–673, 2017.
[20]J.-W. Heo and J.-H. Oh, “Biped Walking Pattern Generation Using an Analytic Method for a Unit Step With a Stationary Time Interval Between Steps,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, pp. 1091–1100, 2015.
[21]H. Herr and M. Popovic, “Angular Momentum in Human Walking,” Journal of Experimental Biology, Vol. 211, pp. 467–481, 2008.
[22]A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti, “Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid,” Autonomous Robots, Vol. 40, pp. 473–491, 2016.
[23]H. Hirukawa, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, Y. Kawai, F. Tomita, S. Hirai, K. Tanie, T. Isozumi, K. Akachi, T. Kawasaki, S. Ota, K. Yokoyama, H. Handa, Y. Fukase, J. ichiro Maeda, Y. Nakamura, S. Tachi, and H. Inoue, “Humanoid Robotics Platforms Developed in HRP,” Robotics and Autonomous Systems, Vol. 48, No. 4, pp. 165–175, 2004.
[24]V. J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artificial Intelligence Review, Vol. 22, No. 2, pp. 85–126, 2004.
[25]C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Transactions on Neural Networks, Vol. 13, No. 2, pp. 415–425, 2002.
[26]H.-K. Hsu, H.-P. Huang, and M.-B. Huang, “A Real-time Optimal Energy-saving Walking Pattern Generator based on Gradient Descent Method and Linear Quadratic Control,” Advanced Robotics, Vol. 33, No. 10, pp. 487–507, 2019.
[27]H.-K. Hsu, H.-P. Huang, and S.-Y. Lo, “A Humanoid Robotics Simulation and Control Platform for NINO,” International Journal of the Digital Human, Vol. 1, No. 2, pp. 169–194, 2016.
[28]H.-P. Huang, J.-L. Yan, and T.-H. Cheng, “State-incremental Optimal Control of 3D COG Pattern Generation for Humanoid Robots,” Advanced Robotics, Vol. 27, No. 3, pp. 175–188, 2013.
[29]A. A. Jaber and R. Bicker, “Wireless Fault Detection System for an Industrial Robot based on Statistical Control Chart,” International Journal of Electrical and Computer Engineering, Vol. 7, No. 6, pp. 3421–3435, 2017.
[30]S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Humanoid Robotics, 1st Edition, Berlin Heidelberg: Springer, 2014.
[31]S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,” Proceeding of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1620–1626, 2003.
[32]S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, pp. 1644–1650, 2003.
[33]S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, “Biped Walking Pattern Generation by a Simple Three-Dimensional Inverted Pendulum Model,” Advanced Robotics, Vol. 17, No. 2, pp. 131–147, 2003.
[34]S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, “Biped Walking Pattern Generator Allowing Auxiliary ZMP Control,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2993–2999, 2006.
[35]S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, and K. Yokoi, “Biped Walking Stabilization based on Linear Inverted Pendulum Tracking,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 4489–4496, 2010.
[36]F. Kanehiro, M. Morisawa, W. Suleiman, K. Kaneko, and E. Yoshida, “Integrating Geometric Constraints into Reactive Leg Motion Generation,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 4069–4076, 2010.
[37]K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita, “Cybernetic Human HRP-4C,” Proceeding of IEEE-RAS International Conference on Humanoid Robots, Paris, France, pp. 7–14, 2009.
[38]E. Khalastchi and M. Kalech, “On Fault Detection and Diagnosis in Robotic Systems,” ACM Computing Surveys, Vol. 51, No. 1, pp. 1–24, 2018.
[39]J. Y. Kim, I. W. Park, and J. H. Oh, “Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor,” Journal of Intelligent and Robotic Systems, Vol. 48, No. 4, pp. 457–484, 2007.
[40]A. Ko, G. Venture, and Y. Nakamura, “Identification of Humanoid Robots Dynamics Using Floating-Base Motion Dynamics,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 2854–2859, 2008.
[41]T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. Smith, J. Englsberger, and J. Pratt, “Design of a Momentum-based Control Framework and Application to the Humanoid Robot Atlas,” International Journal of Humanoid Robotics, Vol. 13, No. 1, p. 1650007, 2016.
[42]S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based Locomotion Planning, Estimation, and Control Design for the Atlas Humanoid Robot,” Autonomous Robots, Vol. 40, pp. 429–455, 2016.
[43]J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao, “Intelligent Prognostics Tools and E-maintenance,” Computers in Industry, Vol. 57, No. 6, pp. 476–489, 2006.
[44]S. H. Lee and A. Goswami, “A Momentum-based Balance Controller for Humanoid Robots on Non-Level and Non-Stationary Ground,” Autonomous Robots, Vol. 33, pp. 399–414, 2012.
[45]S. Lee, A. Hofmann, and A. Goswami, Humanoid Robotics: A Reference, 1st Edition, Dordrecht: Springer, 2018.
[46]C. Liu, J. Ning, J. Yang, and Q. Chen, “Disturbance Rejection based on Momentum Compensation for Humannoid Robots,” Proceeding of Chinese Control Conference, Dalian, China, pp. 6670–6675, 2017.
[47]H. Louahem M’Sabah and A. Bouzaouit, “Degradation Model of the Bearings by Wiener Process,” Mechanika, Vol. 22, No. 3, pp. 225–228, 2016.
[48]R. C. Luo, P. H. Chang, J. Sheng, S. C. Gu, and C. H. Chen, “Arbitrary biped Robot Foot Gaiting Based on Variate COM Height,” Proceeding of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, pp. 534–539, 2013.
[49]R. C. Luo and C. C. Chen, “Quasi-Natural Humanoid Robot Walking Trajectory Generator Based on Five-Mass with Angular Momentum Model,” IEEE Transactions on Industrial Electronics, Vol. 65, No. 4, pp. 3355–3364, 2018.
[50]R. C. Luo, K. C. Lee, and A. Spalanzani, “Humanoid Robot Walking Pattern Generation Based on Five-Mass with Angular Momentum Model,” Proceeding of IEEE International Symposium on Industrial Electronics, Santa Clara, CA, USA, pp. 375–380, 2016.
[51]A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum Control for Balance,” ACM Transactions on graphics, Vol. 28, No. 3, pp. 80–87, 2009.
[52]M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse Kinematics with Floating Base and Constraints for Full Body Humanoid Robot Control,” Proceeding of IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, pp. 22–27, 2008.
[53]D. C. Montgomery, Introduction to Statistical Quality Control, 7th Editio., New York: John Wiley & Sons, Inc., 2013.
[54]M. Morisawa, S. Kajita, K. Kaneko, and K. Harada, “Pattern Generation of Biped Walking Constrained on Parametric,” Proceeding of International Conference on Robotics and Automation, Barcelona, Spain, pp. 2405–2410, 2005.
[55]R. Muradore and P. Fiorini, “A PLS-based Statistical Approach for Fault Detection and Isolation of Robotic Manipulators,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 8, pp. 3167–3175, 2012.
[56]L. S. Nelson, “The Shewhart Control Chart-Tests for Special Causes,” Journal of Quality Technology, Vol. 16, No. 4, pp. 237–239, 1984.
[57]K. Nishiwaki and S. Kagami, “Online Walking Control System for Humanoids with Short Cycle Pattern Generation,” The International Journal of Robotics Research, Vol. 28, No. 6, pp. 729–742, 2009.
[58]Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. Lim, and A. Takanishi, “Development of a New Humanoid Robot WABIAN-2,” Proceeding of IEEE International Conference on Robotics and Automation, Orlando, Florida, pp. 76–81, 2006.
[59]S. Omran, S. Sakka, and Y. Aoustin, “Effects of COM Vertical Oscillation on Joint Torques During 3D Walking of Humanoid Robots,” International Journal of Humanoid Robotics, Vol. 13, No. 4, p. 1650019, 2016.
[60]D. E. Orin, A. Goswami, and S. H. Lee, “Centroidal Dynamics of a Humanoid Robot,” Autonomous Robots, Vol. 35, pp. 161–176, 2013.
[61]C. Ott, A. Dietrich, and A. Albu-Schäffer, “Prioritized Multi-Task Compliance Control of Redundant Manipulators,” Automatica, Vol. 53, pp. 416–423, 2015.
[62]M. B. Popovic, A. Goswami, and H. Herr, “Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications,” International Journal of Robotics Research, Vol. 24, No. 12, pp. 1013–1032, 2005.
[63]J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point: A Step toward Humanoid Push Recovery,” Proceeding of IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, pp. 200–207, 2006.
[64]R. O. Ambrose, “Nasa Space Robotics Challenge Overview.” National Aeronautics and Space Administration. <https://www.nasa.gov/sites/default/files/atoms/files/fs_space_robotics_150908.pdf>.
[65]L. Righetti, M. Mistry, J. Buchli, and S. Schaal, “Inverse Dynamics Control of Floating-base Robots with External Contraints: an Unified View,” Proceeding of IEEE International Conference on Robotics and Automation, Shanghai, China, Vol. 11, pp. 1085–1090, 2011.
[66]Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The Intelligent ASIMO: System Overview and Integration,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland, pp. 2478–2483, 2002.
[67]L. Sentis and O. Khatib, “A Whole-Body Control Framework for Humanoids Operating in Human Environments,” Orlando, Florida, USA, pp. 2641–2648, 2006.
[68]T. Seyde, A. Shrivastava, J. Englsberger, J. Pratt, and R. J. Griffin, “Inclusion of Angular Momentum during Planning for Capture Point based Walking,” Proceeding of IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, pp. 1791–1798, 2018.
[69]S. Shimmyo, T. Sato, and K. Ohnishi, “Biped Walking Pattern Generation by Using Preview Control Based on Three-Mass Model,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 11, pp. 5137–5147, 2013.
[70]H.-K. Shin and B. K. Kim, “Energy-Efficient Gait Planning and Control for Biped Robots Utilizing Vertical Body Motion and Allowable ZMP Region,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, pp. 2277–2286, 2015.
[71]T. Sugihara and Y. Nakamura, “Boundary Condition Relaxation Method for Online Motion Planning of Biped Robots,” IEEE Transactions on Robotics, Vol. 25, No. 3, pp. 658–669, 2009.
[72]H. Tomé, L. Marchionni, and A. Tsouroukdissian, “Whole Body Control using Robust & Online Hierarchical Quadratic Optimization,” Proceeding of International Conference on Intelligent Robots and Systems, Chicago, USA, pp. 14–18, 2014.
[73]J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande, K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida, S. Kajita, and F. Kanehiro, “Multi-contact Vertical Ladder Climbing with an HRP-2 Humanoid,” Autonomous Robots, Vol. 40, pp. 561–580, 2016.
[74]A. T. Vemuri, M. M. Polycarpou, and S. A. Diakourtis, “Neural Network Based Fault Detection in Robotic Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 2, pp. 342–348, 1998.
[75]M. Vukobratović and B. Borovac, “Zero-Moment Point — Thirty Five Years of Its Life,” International Journal of Humanoid Robotics, Vol. 1, No. 1, pp. 157–173, 2004.
[76]P. M. Wensing and D. E. Orin, “Improved Computation of the Humanoid Centroidal Dynamics and Application for Whole-Body Control,” International Journal of Humanoid Robotics, Vol. 13, No. 1, p. 1550039, 2016.
[77]G. Wiedebach, S. Bertrand, T. Wu, L. Fiorio, S. McCrory, R. Griffin, F. Nori, and J. Pratt, “Walking on Partial Footholds Including Line Contacts with The Humanoid Robot Atlas,” Proceeding of IEEE-RAS International Conference on Humanoid Robots, Cancun, Mexico, pp. 1312–1319, 2016.
[78]R. C. M. Yam, P. W. Tse, L. Li, and P. Tu, “Intelligent Predictive Decision Support System for Condition-based Maintenance,” International Journal of Advanced Manufacturing Technology, Vol. 17, No. 5, pp. 383–391, 2001.
[79]J.-L. Yan and H.-P. Huang, “A Fast and Smooth Walking Pattern Generator of Biped Robot Using Jacobian Inverse Kinematics,” Proceeding of IEEE Workshop on Advanced Robotics and Its Social Impacts, Hsinchu, Taiwan, pp. 1–6, 2007.
[80]D. You, X. Gao, and S. Katayama, “WPD-PCA-Based Laser Welding Process Monitoring and Defects Diagnosis by Using FNN and SVM,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 1, pp. 628–636, 2015.
[81]T. Yüksel and A. Sezgin, “Two Fault Detection and Isolation Schemes for Robot Manipulators Using Soft Computing Techniques,” Applied Soft Computing, Vol. 10, No. 1, pp. 125–134, 2010.
[82]S. Yun and A. Goswami, “Momentum-based Reactive Stepping Controller on Level and Non-level Ground for Humanoid Robot Push Recovery,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 3943–3950, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top