跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施靖嫻
研究生(外文):Jing-Xian Shi
論文名稱:乾黏附式扁圓形彈簧導引壓電致動器之設計開發
論文名稱(外文):Design and Development of Piezo Linear Actuator guided by dry adhesive elliptical-shaped spring guide
指導教授:黃光裕
指導教授(外文):Kuang-Yuh Huang
口試委員:林沛群廖先順
口試委員(外文):Pei-Chun LinHsien-Shun Liao
口試日期:2020-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:長行程線性致動器壓電致動器扁圓形彈簧導引乾黏附滯滑原理致動解析度
外文關鍵詞:Long-stroke linear actuatorPiezo actuatorElliptical-shaped spring guideDry adhesiveStick-slipPositioning resolution
DOI:10.6342/NTU202001146
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種可長行程致動的線性致動器,採用具有高動態、體積小、高出力及微小致動等特性的壓電元件作為致動來源,其被廣泛應用於高精度的致動器中。致動器結合乾黏附式扁圓形彈簧導引裝置,透過慣性滯滑致動原理,以達到長行程且高解析度的致動。乾黏附式扁圓形彈簧導引裝置透過撓性墊片之彈性變形與回復,達成線性導引,且由於彈簧的軸向剛性變化使得導引過程具有低阻力的特性。乾黏附黏膠貼附於扁圓形彈簧上,可提高承載力與致動力,且其本身的黏彈性亦可以達到減振效果,使致動更穩定。利用理論計算與實驗測試,探討扁圓形彈簧的構型及設計參數對導引性能的影響。對慣性滯滑原理進行推導,並分析影響參數與致動性能的關係。影響致動性能的因素包含鋸齒波訊號的驅動電壓及頻率、扁圓形彈簧導引裝置提供的摩擦預力、壓電軸向預力以及負載質量等,皆透過實驗進行致動性能測試與驗證。壓電致動器的尺寸為48 mm x 40 mm x 23 mm,依據測試結果,壓電致動器位移總行程大於5 mm。在摩擦預力4.21 N、驅動電壓60 V及驅動頻率100 Hz的情況下可達到最大致動速度114.12 μm/s;在摩擦預力4.85 N、驅動電壓60 V及驅動頻率400 Hz時,具有最小致動解析度24 nm。
In this thesis, one kind of linear actuator is developed, which is able to achieve long-stroke movements. A Piezo Element is used as the source of power in this actuator, featuring high response speed, high output force and tiny stroke, and it is widely applied in high-precision actuators. Actuator guided by dry adhesive elliptical-shaped spring is able to travel in long distance with high resolution through the inertial stick-slip driving principle. Through the elastic deformation and recovery force of flexible structure and the decrease in axial stiffness of spring, dry adhesive elliptical-shaped spring device can easily achieve linear guiding with a lower resistance force. With dry adhesive sticking on elliptical-shaped spring, both the bearing capacity and driving force of the actuator can be increased; in addition, the viscoelasticity property of dry adhesive makes the movement more stable by decreasing vibration. With theoretical computation and experiment, the influences of the construction and design parameters of elliptical-shaped spring are analyzed. The inertial stick-slip driving principle is study to analyze the relationship between the influential parameters and the actuator’s positioning performance. The influential factors include driving force, driving frequency, frictional preload, axial preload of the Piezo Element and bearing load, and they are all experimentally tested and verified. The dimension of the actuator is 48 mm in length, 40 mm in width and 23 mm in height. According to the testing results, the actuator can travel more than 5 mm. The maximum speed is 114.12 μm/s when the driving voltage is 60 V, driving frequency is 100 Hz, and frictional preload is 4.21 N. While the driving voltage is 60 V, driving frequency is 400 Hz, and frictional preload is 4.85 N, the minimum resolution of the actuator is 24 nm.
口試委員論文審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
表目錄 X
圖目錄 XI
符號表 XVI
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 2
1.2.1 黏附機制 4
1.2.2 壓電致動型式 7
1.3 內容簡介 15
第二章 黏附式扁圓形彈簧導引壓電致動系統 16
2.1整體系統之設計概念和架構 16
2.2 乾黏附線性導引系統 16
2.2.1導引結構設計 17
2.2.2乾黏附裝置 19
2.3 壓電致動系統 19
2.3.1 壓電元件預壓調節裝置 20
2.3.2 致動摩擦力之預壓調節單元 21
2.3.3 壓電元件配置 22
2.3.4壓電致動器概念結構 22
第三章 黏附式扁圓形彈簧導引壓電致動系統之理論分析 24
3.1扁圓形彈簧變形理論分析 24
3.3.1扁圓形彈簧長短軸變形關係推導 24
3.1.2 扁圓形彈簧之力變形理論推導 26
3.2 慣性滯滑致動理論推導 28
第四章 乾黏附式扁圓形彈簧導引壓電致動系統之實體化開發與特性測試 32
4.1 乾黏附式彈簧導引裝置之實體化開發 32
4.2 乾黏附式扁圓形彈簧導引裝置之性能測試 32
4.2.1 扁圓形彈簧橫向回彈力測試 32
4.2.2 扁圓形彈簧軸向回復力測試 35
4.2.3 乾黏附膠剪切方向之黏附力測試 39
4.2.4 乾黏附膠對承載力與導引穩定性之影響 41
4.3 滯滑式壓電致動器之實體化開發 43
4.4 滯滑式壓電致動器之性能測試 44
4.4.1 鎳鈦合金超彈性線的超彈性性質 44
4.4.2 壓電致動器軸向預壓之影響 46
4.4.3 壓電塊致動位移影響參數探討 47
第五章 整體系統之性能測試 49
5.1 整體系統之架構 49
5.2 滯滑式致動位移及速度量測 50
5.2.1 往復致動位移 50
5.2.2 驅動電壓與頻率對軸向致動位移與速度之影響 51
5.2.3 摩擦預力與壓電軸向預力對軸向致動速度之影響 54
5.2.4 致動器有效負載 56
5.3 致動解析度與穩定性 57
5.3.1 驅動電壓、頻率對致動位移解析度之影響 57
5.3.2 壓電軸向預力、摩擦預力對致動解析度與穩定性之影響 59
5.3.3垂直負載對致動解析度與穩定性之影響 61
5.4 致動力測試 62
5.4.1 軸向負載對致動力的影響 62
5.4.2 摩擦預力與軸向預力對致動力的影響 64
5.5 乾黏附膠於長時間使用之性能評估 65
第六章 壓電致動器之定位性能測試與分析 68
6.1 開迴路下之定位重複性量測 68
6.2 殘留位置偏移量測 69
6.3偏擺與俯仰誤差之測試探討 71
6.4 長行程致動之非線性度評估 74
6.5回饋定位控制 75
6.5.1回饋控制下的重複定位精度評估 75
6.5.2 黏膠種類對定位精與性能的影響 77
6.6 致動器之性能統整與模組化設計 78
第七章 結論與未來展望 80
參考文獻 82
附錄A 荷重計 KYOWA LMA-A-5N 85
附錄B 荷重計 KYOWA LUR-A-200NSA1 86
附錄C 訊號放大器 KYOWA CDV-700A 87
附錄D 壓電元件 THORLABS PC4FL 89
附錄E 資料擷取器 NI USB-6003 91
附錄F 光纖位移計 MTI-2100 Fotonic Sensor 92
附錄G 雷射位移計 KEYENCE LB-12 & LB-72 94
Koh, K.H., Sreekumar, M., and Ponnambalam, S.G., “Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot” , Mechatronics, Volume 35, 1 May 2016, pp.122-135.
Hensel, R., Moh, K., and Arzt, E., “Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications” , Advanced Functional Materials, Volume 28, Issue 28, 11 July 2018, art. no. 1800865.
Hui, C.-Y., Glassmaker, N.J., Tang, T., and Jagota, A., “Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion” , Journal of the Royal Society Interface, Volume 1, Issue 1, 2004, pp.35-48.
Gu, G., Zou, J., Zhao, R., Zhao, X., and Zhu, X., “Soft wall-climbing robots” , Science Robotics, Volume 3, Issue 25, December 19, 2018, art. no. eaat2874.
De Rivaz, S.D., Goldberg, B., Doshi, N., Jayaram, K., Zhou, J., and Wood, R.J., “Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion” , Science Robotics, Volume 3, Issue 25, December 19, 2018, art. no. eaau3038.
Hawkes, E.W., Christensen, D.L., and Cutkosky, M.R., “Vertical dry adhesive climbing with a 100× bodyweight payload” , Proceedings - IEEE International Conference on Robotics and Automation, Volume 2015-June, Issue June, 29 June 2015, art. no. 7139722, pp.3762-3769.
Zhang, Y., Zhang, Y., Wu, X., and Mei, T., “Design and experiment of a tank-like wall-climbing robot using fibril dry adhesives” , 2016 IEEE International Conference on Mechatronics and Automation, 1 September 2016, art. no. 7558643, pp.671-676.
Hawkes, E.W., Jiang, H., Christensen, D.L., Han, A.K., and Cutkosky, M.R., “Grasping Without Squeezing: Design and Modeling of Shear-Activated Grippers” , IEEE Transactions on Robotics, Volume 34, Issue 2, April 2018, pp. 303-316.
Jbaily, A. and Yeung, R.W., “Piezoelectric devices for ocean energy: a brief survey” , Journal of Ocean Engineering and Marine Energy, Volume 1, Issue 1, 1 February 2015, pp.101-118.
Izuhara, S. and Mashimo, T., “Design and evaluation of a micro linear ultrasonic motor” , Sensors and Actuators, A: Physical, Volume 278, 1 August 2018, pp.60-66.
Spanner, K. and Koc, B., “Piezoelectric motor using in-plane orthogonal resonance modes of an octagonal plate” , Actuators, Volume 7, Issue 1, 1 March 2018, art. no.2.
Mohammad, T. and Salisbury, S.P., “Design and Assessment of a Z-Axis Precision Positioning Stage with Centimeter Range Based on a Piezoworm Motor” , IEEE/ASME Transactions on Mechatronics, Volume 20, Issue 5, 1 October 2015, art. no. 6924744, pp.2021-2030.
Naikwad, S.S., Vandervelden, R., and Hosseinnia, S.H., “Self-sensing contact detection in piezo-stepper actuator” , MESA 2016 - 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications - Conference Proceedings, 7 October 2016, art. no. 7587186.
Lee, S.W., Ahn, K.-G., and Ni, J., “Development of a piezoelectric multi-axis stage based on stick-and-clamping actuation technology”, Smart Materials and Structures, Volume 16, Issue 6, 1 December 2007, pp.2354-2367.
Yu, D., Tang, H., Pan, Y., Guo, X., He, S., Chen, X., and Gao, J., “Design and modeling of a novel wheel-type piezoelectric nanopositioning motor with centimeter-scale stroke”, 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO 2019 - Proceedings, August 2019, art. no. 8947389, pp.124-129.
Rakotondrabe, M., Haddab, Y., and Lutz, P., “Design, development and experiments of a high stroke-precision 2DoF (linear-angular) microsystem”, Proceedings - IEEE International Conference on Robotics and Automation, Volume 2006, 2006, art. no. 1641787, pp.669-674.
卓泓民,“整合氣靜壓導引之滯滑式壓電致動系統之設計開發”,國立台灣大學機械工程學系碩士論文,2018。
Zhao, B., Pesika, N., Zeng, H., Wei, Z., Chen, Autumn, K., Y., Turner, K., and Israelachvili, J., “Role of tilted adhesion fibrils (Setae) in the adhesion and locomotion of gecko-like systems”, Journal of Physical Chemistry B, Volume 113, Issue 12, 26 March 2009, pp.3615-3621.
Huang, K.-Y. and Ho, C.-H., “Development and analysis of a long-stroke spring guiding system”, Journal of Mechanical Design, Transactions of the ASME, Volume 126, Issue 6, November 2004, pp.1055-1061.
Krishna, B.V., Bose, S., and Bandyopadhyay, A., “Laser processing of net-shape NiTi shape memory alloy”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science Volume 38, Issue 5, May 2007, pp.1096-1103.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top