跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸俊甫
研究生(外文):Jun-Fu Lu
論文名稱:基於響應預測之多重控制器切換及其於精密定位平台之應用
論文名稱(外文):Multiple Switching Control based on Response Prediction:with Application to a Long-Stroke Precision Stage
指導教授:王富正
指導教授(外文):Fu-Cheng Wang
口試委員:顏家鈺彭昭暐邱謙松
口試委員(外文):Jia-Yush YenJau-Woei PerngChian-Song Chiu
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:171
中文關鍵詞:壓電材料步進馬達精密定位平台強韌控制粒子群演算法控制器切換雙光子聚合
外文關鍵詞:Piezoelectric materialStepper motorPrecision positioning stageRobust controlSwitching controlTwo photon polymerization
DOI:10.6342/NTU202002170
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文發展一套多重控制器切換機制,藉由預測系統未來響應決定控制器最佳切換時機,並將其應用於大行程精密定位平台,結合雙光子聚合技術製作微結構物,以光學性質顯示所提出的控制器切換機制確實有助於提升微結構物製作精度。
隨著科技快速發展,許多高科技產業與產品走向精密化、微小化的趨勢,例如:半導體產業製程、微機電系統製程、雙光子製程等等。其中壓電材料由於具有高精密度與響應快等優點已被廣泛的應用在精密定位系統,然而受限於材料的行程,使其無法達到大尺度的製造,因此本論文整合精密壓電平台及大行程步進馬達平台,其中壓電平台採用壓電材料進行精密定位,步進馬達可以增加平台整體行程,將其整合為大行程且高精密度之整合平台。
首先,我們針對壓電平台設計多個不同特性的強韌控制器,並藉由粒子群演算法將控制器降階,而為了結合多個控制器的優點,本論文提出多重控制器切換架構,預測壓電平台未來響應來決定控制器使用的優先順序,來達到最佳的追跡響應。其次,我們針對步進馬達平台設計前饋控制器並結合增益調變比例控制器,前饋控制器可以減少追跡誤差與相位落後,而增益調變控制器可以調配馬達的速度,來增進馬達平台的追跡能力。最後我們整合兩種平台並提出雙迴圈控制架構,透過預測整合平台的輸出響應來決定壓電平台控制器的切換順序,修正整合平台的誤差,最終以模擬與實驗展現大行程且精密的定位能力。
我們進一步將多重控制器切換機制應用於雙光子聚合製程,分別製作直徑130μm的微透鏡結構物與刻畫長度205μm且寬度30μm的文字結構物,以SEM拍攝微結構物成品與測試微透鏡的光學性質,顯示所提出的多重控制器切換機制有助於提升平台精密定位性能。
This thesis develops a multiple controller switching mechanism for a long-stroke precision positioning stage. This mechanism determines the optimal control switching sequences by predicting the future response. We further integrate the precision positioning stage with a two-photon polymerization (TPP) system to fabricate micro-structures. The optical properties of microstructures show that the proposed controller switching mechanism is effective in improving of microstructure fabrication.
With the advance of technology, precision positioning techniques are becoming more amd more important for high-tech industries, such as semiconductor manufacturing process, microelectromechanical systems and two-photon manufacturing process. Piezoelectric transducer (PZT) is usually applied for precision positioning because of its fast response and high resolution. However, travel distance of PZT is limited because of the material properties. Therefore, we integrate the the PZT stage with a stepper motor stage to achieve high precision with long stroke.
First, we design several controllers with different advantages for the PZT stage and propose the multiple switching control architecture to predict the future response and to switch the controllers for improving tracking response. Second, we design a feedforward controller and a gain scheduling controller for the stepper motor stage. The feedforward controller can reduce tracking errors, while the gain scheduling controller can adjust the speed of the motor to improve the tracking ability. Third, we integrate the two stages and propose a double-loop control architecture, so that the PZT stage can compensate the errors caused by the stepper motor stage. Finally, we demonstrate the long-stroke precise positioning capability through simulation and experiment.
We further integrat the combined stage with a TPP system to fabricate microlens with a diameter of 130 μm by Fresnel zone plate (FZP) and a text structures with a length of 205 μm and a width of 30 μm. We test the optical properties of the microlens and observe the structure by SEM. The results confirm the precise positioning performance of the combined stage employing the proposed switching control.
致謝 I
中文摘要 III
目錄 VII
圖目錄 XIII
表目錄 XIX
符號 XXIII
縮寫 XXVII
第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 章節安排 4
第二章 硬體架構介紹 7
2.1 精密定位平台系統 7
2.2.1 壓電平台 7
2.2.2 資料擷取卡 8
2.2.3 電壓放大器 10
2.2.4 光學尺感測器 12
2.2 大行程定位平台系統 13
2.2.1 步進馬達 13
2.2.2 資料擷取卡 15
2.2.3 光學尺感測器 16
2.3 雙光子雷射系統架構 17
2.4 電腦控制架構 19
第三章 強韌控制理論 21
3.1 範數 21
3.2 線性分式轉換與互質因式分解 22
3.2.1 線性分式轉換 22
3.2.2 互質因式分解 24
3.3 系統不確定性模型 25
3.4 強韌控制架構之一般化 26
3.5 間隙度量 28
3.6 系統強韌性分析 29
3.7 控制器設計 30
第四章 系統識別 35
4.1 系統鑑別方法 35
4.2 壓電平台系統識別 37
4.3 馬達平台系統識別 44
4.3.1 步進馬達系統識別 44
4.3.2 水平步進馬達平台 45
4.3.3 垂直式步進馬達平台 47
4.3.4 馬達平台標稱系統 48
第五章 控制器設計 53
5.1 壓電平台控制器設計 53
5.1.1 強韌控制器設計 53
5.1.2 粒子群優化演算法 57
5.2 基於系統響應預測之多重控制器切換機制 67
5.2.1 響應估測器設計與預測範圍 (Prediction Horizon) HP 68
5.2.2 控制切換次數 (Control switching steps) 69
5.2.3 成本函數與響應選擇限制 70
5.2.4 多重控制器切換架構 71
5.3 預測範圍HP與控制切換次數SP之選擇 72
5.3.1 兩組控制器切換 72
5.3.2 三組控制器切換 76
5.4 多重控制器切換模擬與實驗 79
5.4.1 步階追跡響應 79
5.4.2 斜坡追跡響應 83
5.4.3 弦波追跡響應 87
5.4.4 文字軌跡追跡響應 92
5.5 步進馬達平台控制器設計 95
5.5.1 增益調變控制器 95
5.5.2 前饋控制器 97
5.5.3 步進馬達平台步階追跡響應 99
5.5.4 步進馬達平台斜坡追跡響應 103
5.5.5 步進馬達平台弦波追跡響應 108
5.6 控制器的改進與比較 115
5.6.1 壓電平台控制器比較 115
5.6.2 步進馬達平台控制器比較 116
第六章 整合平台測試 119
6.1 整合平台硬體架構 119
6.2 整合平台之控制架構 120
6.3 步階、斜坡、弦波追跡響應 122
6.3 大行程追跡實驗 128
6.3.1 二維命令追跡響應 128
6.3.2 三維命令追跡響應 129
6.4 整合平台控制的改進與比較 131
第七章 整合平台與雙光子聚合技術之微製造 133
7.1 雙光子聚合系統 133
7.1.1 雙光子聚合原理 133
7.1.2 實驗流程與參數設定 134
7.1.3 硬體架構整合 136
7.2 實驗問題修正與參數調整 137
7.2.1 載台傾斜校正 137
7.2.2 路徑延遲時間 140
7.2.2 雷射線寬測試 140
7.3 製造FRESNEL ZONE PLATE微透鏡 141
7.3.1 Fresnel Zone Plate圖案與路徑設計 141
7.3.2 Fresnel Zone Plate追跡結果 143
7.3.3 Fresnel Zone Plate 光學性質分析與成像測試 146
7.3.4 Fresnel Zone Plate 追跡誤差與光學性質比較 149
7.4 文字刻畫 150
第八章 結論 153
8.1 論文總結 153
8.2 未來展望 154
Reference 155
附錄A、規格表 159
附錄B、壓電平台y軸粒子移動情形 163
附錄C、微結構物成品 165
口試委員之問題與回答 167
[1]S. Mishra, L. Unnikrishnan, S. K. Nayak, S. Mohanty. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromolecular Materials and Engineering 2019;Vol. 304, Iss. 1.
[2]J. Gan, X. Zhang. Nonlinear Hysteresis Modeling of Piezoelectric Actuators Using a Generalized Bouc–Wen Model. Micromachines 2019;Vol. 10, Iss. 3, Pgs. 183.
[3]G. Chen, X. Yan, J. Cai, H. Guo. Hysteresis nonlinear modeling andcompensation of piezoelectric ceramic sensors in micro measurement systems. Measurement Science and Technology 2018;Vol. 29, Num. 9.
[4]J. Fang, J. Wang, C. Li, W. Zhong, Z. Long. A Compound Control Based on the Piezo-Actuated Stage with Bouc–Wen Model. Micromachines 2019; Vol. 10, Iss. 12, Pgs. 861.
[5]Z. Wei, B. L. Xiang, R. X. Ting. Online parameter identification of the asymmetrical Bouc–Wenmodel for piezoelectric actuators. Precision Engineering 2014;Vol. 38, Iss. 4, Pgs. 921-927.
[6]Y. Qin, X. Zhao, L. Zhou. Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model. Micromachines 2017;Vol. 8, Iss. 4, Pgs.114.
[7]J. W. Lian, H. Y. Chen. Feedforward and Feedback Control for Piezoelectric Actuated Systems using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization. International Conference on Advanced Mechatronic Systems 2014.
[8]G. Y. Gu. L. M. Zhu, C. Y. Su, H. Ding. Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation. IEEE/ASME TRANSACTIONS ON MECHATRONICS 2012;Vol. 18, Iss. 5, Pgs. 1459 – 1471.
[9]Md. S. Rana, H. Pota, I. Petersen. The design of model predictive control for an AFM and its impact on piezo nonlinearities. European Journal of Control 2014;Vol. 20, Iss. 4, Pgs. 188-198.
[10]H. P. Syahputra, T. J. Ko, B. M. Chung. Development of 2-axis hybrid positioning system for precision contouring on micro-milling operation. Journal of Mechanical Science and Technology 2014;Vol. 28, Iss. 2, Pgs. 691~697.
[11]J. Fang, Z. Long, L. Zhang, L. Nian. Driving Process and Control Analysis In Macro-micro Dual Stage. International Conference on Information and Automation 2013.
[12]Y. Tan, J. Gao, L. Zhang, Y. Jiang, H. Tang, Y. He. A Rapid PID Control Method for High-speed Macro-micro Composite Positioning Stage. International Conference on Electronic Packaging Technology 2017.
[13]F. C. Wang. The Development of a Long-Stroke Precision Positioning Stage for Micro Fabrication by Two-Photon Polymerization. Journal of Laser Micro / Nanoengineering 2016. Vol. 11, Iss. 1, Pgs. 1-12.
[14]B. Ding, Y. Li. Hysteresis Compensation and Sliding Mode Control with Perturbation Estimation for Piezoelectric Actuators. Micromachines 2018. Vol. 9, Iss. 5, Pgs. 241.
[15]B. O. Alunda, M. Chepkoech, C. C. Byeon, Y. J. Lee. Prandtl-Ishlinskii Model-based Hysteresis Compensation of a Piezoelectric Scanner for Atomic Force Microscopy. New Physics: Sae Mulli. 2017. Vol. 67, No. 12, Pgs. 1520-1527.
[16]https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/multi-axis-piezo-flexure-stages/p-517-p-527-multi-axis-piezo-scanner-201500/
[17]https://www.ni.com/zh-tw/support/model.pci-6221.html
[18]https://www.ni.com/zh-tw/support/model.pci-6229.html
[19]http://zone.ni.com/reference/en-XX/help/370466V-01/measfunds/codewidth
[20]http://www.piezomechanik.com/en/products
[21]http://www.heidenhain.com/en_US/products/linear-encoders/exposed-linear-encoders/selection-guide-for-lip/lip-471481/
[22]http://www.chuo.co.jp/contents/hp0337/list.php?CNo=337&ProCon=5361
[23]http://www.chuo.co.jp/contents/hp0058/list.php?CNo=58&ProCon=94
[24]https://www.ni.com/zh-tw/support/model.pci-6220.html
[25]https://www.ni.com/zh-tw/support/model.pcie-6323.html
[26]http://www.inmoco.co.uk/mercury_ii_5000
[27]http://www.edmundoptics.com/cameras/usb-cameras/eo-usb-2-0-cmos-machine-vision-cameras/59363/
[28]http://www.olympus.com.tw/zh/
[29]http://www.teemphotonics.com/
[30]S. Y. Chen. Automatic large area micro manufacturing system for two-photon polymerization. Master thesis, Department of Mechanical Engineering, National Taiwan University. Taipei, 2014.
[31]W. J. Lee. Optimization of material and fabrication process for micro fabrication by two-photon polymerization. Master thesis, Department of Mechanical Engineering, National Taiwan University. Taipei, 2014.
[32]J. Doyle, B. Francis, A. Tannenbaum. Feedback control theory. Macmillan 1990.
[33]K. Zhou. Essentials of robust control. Prentice Hall International 1998.
[34]K. Glover, D. McFarlane. Robust stabilization of normalized coprime factor plant descriptions with -bounded uncertainty. IEEE transactions on Automatic Control 1989; Vol. 34 Iss. 8, Pgs. 821–830.
[35]D. McFarlane, K. Glover. A loop-shaping design procedure using synthesis. IEEE transactions on Automatic Control 1992; Vol. 37 Iss. 6, Pgs. 759–769.
[36]F. C. Wang, L. S. Chen, Y. C. Tsai et al. Robust loop-shaping control for a nano-positioning stage. Journal of Vibration and Control 2014; Vol. 20 No. 9, Pgs. 885–900.
[37]M. E. Khan, F. Khan. A comparative study of white box, black box and grey box testing techniques. International Journal of Advanced Computer Science and Applications (IJACSA) 2012; Vol. 3 Iss. 6, Pgs. 12–15.
[38]J. Kennedy, R. Eberhart. Particle swarm optimization. International Conference on Neural Networks.
[39]F. C. Wang, K. A. Wang. Fabrication of large-scale micro-structures by two-photon polymerization with a long-stroke precision stage. Advances in Mechanical Engineering 2017. Vol. 9, no. 4, pgs. 1–15.
[40]F. C. Wang, Y. K. Peng, J. F. Lu. Micro-lens fabrication by a long-stroke precision stage with switching control based on model response prediction. Microsystem Technologies 2019.
[41]J. Meyrán García. Augustin-Jean Fresnel. Rev Mex Oftalmol 2008. Vol. 82, Iss. 2. Pgs. 130.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top