跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡耀霆
研究生(外文):Yao-Ting Tsai
論文名稱:全球定位系統單雙頻信號用於電離層路徑總電子含量估測及應用
論文名稱(外文):The Estimation of TEC and Its Application by Using GPS Single and Double Frequency Signals
指導教授:王立昇
指導教授(外文):Li-Sheng Wang
口試委員:張帆人王和盛卓大靖
口試委員(外文):Fan-Ren ChangHe-Sheng WangDa-Jing Jhuo
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:電離層總電子含量單頻單點定位CCLPPP
外文關鍵詞:CCLPPPionospheretotal electron contentsingle frequency single point positioning
DOI:10.6342/NTU202002368
相關次數:
  • 被引用被引用:2
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球定位系統(Global Positioning System ,GPS)的使用越來越普及,用戶對定位的精準度要求也日益增加,但大部分使用者都屬於單點單頻定位,而單頻接收機無法像雙頻一樣使用去電離層組合有效的將電離層誤差消除,此一誤差也是影響單頻定位效果的重點之一。
GPS定位受到電離層的影響產生誤差,但也可以反過來利用接收到的觀測量,透過有效的消除其他誤差的方式,來估測電離層的總電子含量(Total Electron Content ,TEC),而其用處有二。一是探測該區域電離層值,提供有效的物理量,透過長期觀測,可觀察出電離層的時空分布及其變化週期,並加以分析及解釋。二是利用探測出的電離層值提供給單頻接收機,有效的消除訊號傳播過程中造成的電離層誤差,進而增加定位的精準度。
本研究首先介紹全球定位系統及其誤差項,再詳細介紹電離層及其誤差,而後利用三種方法,分別為雙頻CCL(Code-to-Carrier Leveling)、雙頻PPP(Precise Point Positioning)及單頻PPP,利用GPS觀測量透過不同組合來獲得電離層觀測量,最後使用最小平方法來估計出單層電離層模組(Single Layer Model , SLM)所需要的係數,來探測該區域電離層的總電子含量。
實驗方法有二,一是估測整日接收機天頂點的總電子含量(zenith VTEC),並與IGS提供的最終全球電離層地圖(Final GIM)比較其差異。三種方法皆可進行有效估測,而實驗結果得出雙頻PPP與Final GIM最為接近。二是是透過單頻單點定位來評估其TEC值是否能有效的消除電離層誤差,並以Final GIM做參考,比較四種方法的改善程度。從多日之實驗結果觀察,三種方法皆可得到較廣播星曆所提供之電離層修正量更為精準的定位結果。若與Final GIM提供之修正量相比,在3D定位上,雙頻PPP可得到更穩定且較好的結果。若選取雙頻PPP與Final GIM的整合策略,平面定位的準度上亦可改善。
As the use of Global Positioning System (GPS) becomes more and more popular, users have increased requirements for positioning accuracy, but most users are single-point single-frequency positioning. The single-frequency receiver cannot effectively eliminate the ionospheric error by using the ionosphere-free combination as the dual-frequency receiver. This error is one of the main factors affecting the single-frequency positioning.
GPS positioning is affected by the ionosphere, which can cause errors. On the other hand, the received measurements can be used to estimate the Total Electron Content (TEC) of the ionosphere by effectively eliminating other errors. There are two uses for it. One is to detect the ionosphere’s TEC in this area to provide effective physical quantities. Through long-term observation, the spatio-temporal distribution of the ionosphere and its period can be observed, analyzed and explained. The second is to provide the single-frequency receiver with the ionospheric TEC value. The single frequency receiver can then eliminate the ionospheric error caused by the signal propagation process, so as to increase the positioning accuracy.
In this thesis, the global positioning system and its error terms are firstly introduced , and the ionosphere and its errors are described in detail. Then, three methods are used, namely dual-frequency CCL (Code-to-Carrier Leveling), dual-frequency PPP (Precise Point Positioning) and single frequency PPP , such that the GPS measurements are analysed to obtain ionospheric observations. Finally, the least square method is adopted to estimate the coefficients in the single layer model (SLM) to detect the total electron content of the ionosphere in the area.
There are two experimental methods. One is to estimate the total electron content of the zenith of the receiver (zenith VTEC) throughout the day, and compare the difference with the final global ionospheric map (Final GIM) provided by IGS. All three methods are effectively estimated, and the experimental results show that the dual-frequency PPP is more closer to the Final GIM.
The second method is to evaluate whether the TEC value can effectively eliminate the ionospheric error through single-frequency single-point positioning, for which the Final GIM id used as a reference to compare the improvement of the three methods. From the experimental results, the three methods can obtain ionospheric corrections and improved positioning results than those provided by broadcast ephemeris. Compared with the correction provided by Final GIM, dual-frequency PPP can give rise to more stable and better results in 3D positioning. Moreover, If the integration strategy of dual-frequency PPP and Final GIM is selected, the accuracy of plane positioning can even be improved.
口委審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 x
緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究方法簡介及成果 2
1.4 論文架構 2
第二章 全球定位系統 4
2.1 GPS簡介 [1,7-9,21] 4
2.2 GPS 觀測量 [1,8,10,11,21] 6
2.2.1 電碼相位觀測量 6
2.2.2 載波相位觀測量 7
2.3 GPS 觀測量誤差分析 9
2.3.1 衛星軌道誤差[1,8,10,18,19,30] 9
2.3.2 衛星鐘差[1,2 ,30] 9
2.3.3 相對論效應誤差[1,11,30] 11
2.3.4 對流層誤差[1,16-20,30] 11
2.3.4 地球自轉修正[1,11,30] 13
2.3.5 多路徑效應 14
2.3.6 接收機相關誤差[8,10] 14
第三章 電離層 15
3.1 電離層簡介[21,27-29] 15
3.2 電離層誤差[11,21,27-29] 16
3.3 單層電離層模組(Single Layer Model,SLM) [22,32] 17
3.4 Klobuchar 模型 [22] 20
3.5 IGS GIM 22
3.6 廣義三角函數模型[26] 23
第四章 TEC估計演算法 26
4.1 雙頻方法 26
4.1.1 雙頻Code to Carrier Leveling 法(CCL) 26
4.1.2 雙頻Precise Point Positioning 法(DF-PPP)[23,25] 28
4.2 單頻方法 31
4.2.1 單頻Precise Point Positioning法 (SF-PPP) [24] 31
4.3 最小平方法估算 34
4.4 流程圖 37
第五章 實驗結果 38
5.1 1月5日實驗結果 40
5.2 1月13日實驗結果 44
5.3 3月14日實驗結果 48
5.4 4月27日 實驗結果 52
5.5 DF-PPP及Final GIM 整合策略 56
第六章 結論及未來工作 61
參考文獻 63
吳泓霆,”高度約速率波法於解決衛星定位系統單點精確定位多路徑問題之應用”,台大應用力學所論文,2018
NINGBO, W. A. N. G., et al. Accuracy evaluation of GPS broadcast Inter-signal Correction (ISC) parameters and their impacts on GPS standard positioning. Acta Geodaetica et Cartographica Sinica, 2016, 45.8: 919.
J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, "Precise point positioning for the efficient and robust analysis of GPS data from large networks," Journal of Geophysical Research: Solid Earth, vol. 102, 1997.
BERAN, Tomas; KIM, Donghyun; LANGLEY, Richard B. High-precision single-frequency GPS point positioning. In: Proceedings of the 16th international technical meeting of the satellite division of the institute of navigation, Portland, OR, USA. 2003. p. 912.
GAO, Yang; ZHANG, Yufeng; CHEN, Kongzhe. Development of a real-time single-frequency precise point positioning system and test results. In: Proceedings of Ion GNSS. 2006. p. 26-29.
Rinex3.03,Werner Gurtner, Astronomical Institute of the University of Bern, Switzerland and Lou Estey, UNAVCO, Boulder Colorado, USA.
WELLS, David, et al. Guide to GPS positioning. In: Canadian GPS Assoc. 1987.
H.-W. Bernhard, L. Herbert, and W. Elmar, "GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more," ed: Springer-Verlag Wien: NewYork, NY, USA, 2008.
KAPLAN, Elliott; HEGARTY, Christopher. Understanding GPS: principles and applications. Artech house, 2005.
CHEN, Kongzhe. Real-time precise point positioning, timing and atmospheric sensing. 2005.
MISRA, Pratap; ENGE, Per. Global Positioning System: signals, measurements and performance second edition. Global Positioning System: Signals, Measurements And Performance Second Editions, 2006, 206.
J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, "Precise point positioning for the efficient and robust analysis of GPS data from large networks," Journal of Geophysical Research: Solid Earth, vol. 102, no. B3, pp. 5005-5017, 1997.
I. Martin, GNSS Precise Point Positioning. School of Civil Engineering and Geosciences Newcastle University, 2013.
KOUBA, Jan. A guide to using International GNSS Service (IGS) products. 2009.
G. Xu and Dr.-Ing., GPS Theory, Algorithms and Applications, 2 ed. springer, 2007.
A. Niell, "Global mapping functions for the atmosphere delay at radio wavelengths," Journal of Geophysical Research: Solid Earth, vol. 101, no. B2, pp. 3227-3246, 1996.
R. Leandro, M. Santos, and R. B. Langley, "UNB neutral atmosphere models: development and performance," in Proceedings of ION NTM, 2006, vol. 52, no. 1, pp. 564-73.
H. Hopfield, "Two‐quartic tropospheric refractivity profile for correcting satellite data," Journal of Geophysical research, vol. 74, no. 18, pp. 4487-4499, 1969.
J. Saastamoinen, "Atmospheric correction for the troposphere and stratosphere in radio ranging satellites," The use of artificial satellites for geodesy, pp. 247-251, 1972.
COLLINS, J. Paul; LANGLEY, Richard Brian. A tropospheric delay model for the user of the wide area augmentation system. Fredericton: Department of Geodesy and Geomatics Engineering, University of New Brunswick, 1997.
SANZ SUBIRANA, J.; JUAN ZORNOZA, J. M.; HERNÁNDEZ-PAJARES, M. GNSS data processing, Vol. I: Fundamentals and algorithms. ESA communications, ESTEC TM-23/l, Noordwijk, the Netherlands, 2013.
KLOBUCHAR, John A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on aerospace and electronic systems, 1987, 3: 325-331.
XIANG, Yan, et al. Carrier phase-based ionospheric observables using PPP models. Geodesy and Geodynamics, 2017, 8.1: 17-23.
ZHANG, Baocheng, et al. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. Journal of Geodesy, 2018, 92.4: 401-413.
CIRAOLO, Lo, et al. Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 2007, 81.2: 111-120.
YUAN, Yunbin; OU, Jikun. A generalized trigonometric series function model for determining ionospheric delay. Progress in Natural Science, 2004, 14.11: 1010-1014.
彭德熙, “台灣區域性電離層模型之估計:應用於單頻精密單點定位”, 地籍測量 第廿七卷 第三期 2008
黃振傑. 應用卡爾曼濾波建立即時區域電離層模型-以臺中市 GPS 連續運行基站為例. 中興大學土木工程學系所學位論文, 2016, 1-78.”
柳景斌. 基于地基 GPS 的区域电离层 TEC 球冠谐分析及预报. 2008. PhD Thesis. 武汉, 武汉大学.
張文耀,” GNSS定位系統硬件延遲及多路徑效應之分析與處理”,台大應用 力學所論文2019
SHEN, Xiaobing. Improving ambiguity convergence in carrier phase-based precise point positioning. University of Calgary, Department of Geomatics Engineering, 2002.
BEUTLER, G., et al. The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences. Advances in Space Research, 1999, 23.4: 631-653.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top