|
[1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56-8, 1991. [2]E. T. Thostenson, Z. Ren, T. W. Chou, and Technology, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol. 61(13), 1899-912, 2001. [3]X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115-20, 2006. [4]A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Refregiers, and J. Kardos, “Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy,” Proc. Natl. Acad. Sci. USA 112(24), E3095-103, 2015. [5]S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503-6, 2002. [6]S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451(7178), 553-6, 2008. [7]M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nat. Mater. 2(9), 577-85, 2003. [8]J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles.” Nano Lett. 11(2), 701-5, 2011. [9]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. (abingdon) 4(21), 396-402, 1902. [10]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. A 31(3), 213-22, 1941. [11]R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874, 1957. [12]E. Betzig, and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189-95, 1992. [13]C. Girard, and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59(5), 657, 1996. [14]S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797-862, 2007. [15]B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuator A Phys. 4 299-304, 1983. [16]H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357, 1999. [17]E. Hutter, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685-706, 2004. [18]K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828-57, 2011. [19]A. Ashkin, “Trapping of atoms by resonance radiation pressure.” Phys. Rev. Lett. 40(12), 729, 1978. [20]A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288-90, 1986. [21]M. Wang, J. Dong, C. Zhou, H. Xie, W. Ni, S. Wang, H. Jin, and Q. Wang, “Reconfigurable plasmonic diastereomers assembled by DNA origami,” ACS Nano 13(12), 13702-8, 2019. [22]W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934, 2013. [23]L. Y. Wang, K. W. Smith, S. Dominguez-Medina, N. Moody, J. M. Olson, H. Zhang, W. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602-10, 2015. [24]M. L. Nesterov, X. Yin, M. SchäFerling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3(4), 578-83, 2016. [25]J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett. 11(2), 701-5, 2011. [26]A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365-70, 2008. [27]K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13(9), 4118-22, 2013. [28]J. Kypr, I. Kejnovska, D. Renciuk, and M. Vorlickova, “Circular dichroism and conformational polymorphism of DNA,” Nucleic Acids Res. 37(6), 1713-25, 2009. [29]A. Kuzyk, Y. Yang, X. Duan, S. Stoll, A. O. Govorov, H. Sugiyama, M. Endo, and N. Liu, “A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function,” Nat. Commun. 7, 10591, 2016. [30]A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862-6, 2014. [31]U. Levy, and Y. Silberberg, “Weakly diverging to tightly focused Gaussian beams: a single set of analytic expressions,” J. Opt. Soc. Am. A 33(10), 1999-2009, 2016. [32]J. J. Funke, P. Ketterer, C. Lieleg, S. Schunter, P. Korber, H. Dietz, “Uncovering the forces between nucleosomes using DNA origami.” J. Phys. Chem. C, 123, 7347-55, 2019 [33]Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials.” Chem. Commun, 52(10), 2047-50, 2016 [34]G. Klös, M. Miola, and D. S. Sutherland, “Increased refractive index sensitivity by circular dichroism sensing through reduced substrate effect,” J. Phys. Chem. C, 123(12), 7347-55, 2019.
|