跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉宇嘉
研究生(外文):Yu-Chia Liu
論文名稱:金奈米陣列對聚苯乙烯珠之光力捕捉及金奈米桿二聚體之光誘導自組裝
論文名稱(外文):Optical Trapping of Gold Nano-Array on Polystyrene Bead and Light-Mediated Self-Assembly of Gold Nanorod Dimer
指導教授:郭茂坤郭茂坤引用關係廖駿偉
指導教授(外文):Mao-Kuen KuoJiunn-Woei Liaw
口試委員:鄧崇任
口試委員(外文):Tsung-Jen Teng
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:光力高斯光束接觸模態非接觸模態自組裝圓偏振極化圓偏振二色性手徵性光力矩
外文關鍵詞:optical forceGaussian beamcontact modenoncontact modeself-assemblycircularly polarizedcircular dichroismchiralityoptical torque
DOI:10.6342/NTU202002464
相關次數:
  • 被引用被引用:1
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究分為兩部分:第一部分研究奈米金球二維陣列受高斯光束照射後,對聚苯乙烯珠的光力捕捉行為,第二部分研究金奈米桿二聚體受圓偏振光照射產生的光力矩及其自組裝行為,並分析其圓偏振二色性(circular dichroism, CD)。
第一部分金奈米球二聚體陣列抓取聚苯乙烯珠主要的抓取行為大致分為向光側的非接觸模態,與背光側的接觸模態。在向光側的部分,分別在金奈米陣列遠場與近場各產生一個非接觸模態之懸浮靜滯點,遠場的靜滯點始終被光軸控制,金奈米陣列產生的散射對其影響較小;近場的靜滯點會受到較強金奈米陣列散射場的影響,當光軸與金奈米陣列相互移動時,靜滯點會在一定區域內做快速移動像是跳躍的感覺;而在背光側的抓取模態會隨著奈金奈米陣列與光軸的相對位置而改變,當其中一組金球結構在較靠近光軸時,聚苯乙烯珠會被吸引至結構形成接觸模態,也就是說可以透過金球結構穩定的操控被抓取粒子,但當光軸下方的金球結構皆較遠離光軸時,抓取聚苯乙烯珠的行為會轉換成非接觸模態且漂浮在光軸附近。
第二部分研究金奈米桿二聚體受到圓偏振光照射後,產生的光力矩可輔助DNA摺紙技術,操控製作出具有不同角度的金桿二聚體結構,分析其光學手徵性(chirality)。並探討這種二聚體結構的圓偏振二色性(CD)光譜圖隨環境折射率改變的位移變化,分析結果顯示兩金奈米桿角度在40至60度,且當金桿之細長比越大時,CD光譜圖會有明顯的波峰,且對感測環境折射率有更加良好的靈敏度。未來可應用於感測環境折射率變化;藉以量測特定分子的濃度。
This thesis is divided into two parts: the first part studies the optical trapping of a 2D gold nano-array on a freestanding polystyrene bead, and the second part the self-assembled gold nanorod (GNR) dimer induced by a circularly polarized light and its optical property of circular dichroism (CD). The multiple multipole method is used for the simulation.
In the first part, the contact and noncontact modes of optical trapping on a polystyrene bead by 2D nano-array are studied. For the front-side configuration, the polystyrene bead is trapped and float at two stagnation points of the noncontact mode by the nano-array as the system is irradiated by a Gaussian beam. A stagnation point is at the far-field close to the optical axis of Gaussian beam, and the other one in near-field of the gold nano-array. When the gold nano-array moves with respect to the optical axis, the second stagnation point will follow and then jump back; the motion of polystyrene bead performs a step-like one. For the back-side configuration, the major trapping mode is the contact one; the polystyrene bead is attracted on a specific gold nano-dimer. However, when the gold nano-dimer moves away from the optical axis, the trapped polystyrene bead will leave the dimer and jump back to float near the optical axis; the mode changes to noncontact one. If the array continues to move, the bead will be trapped to attach another dimer again.
In the second part, the optical torque upon a GNR dimer irradiated by a circularly polarized light is studied. This optical torque can assist the DNA origami technique to manipulate and tune the angle between two fingers-crossed GNRs. The chirality of the GNR dimer with different angle is analyzed. We investigate the relationship of the circular dichroism (CD) spectrum of this dimer with the environmental refractive index by measuring the spectrum shift. The results show that when the angle of the GNRs is between 40 and 60 degrees and the aspect ratio of GNR is larger the CD spectrum has a better sensitivity for sensing the change of refractive index. In the future, it has a potential of detecting the change in the effective refractive index of the environment to measure the concentration of a specific molecule.
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vi
第1章 緒論 1
1.1 前言 1
1.2 動機與目的 3
1.3 文獻回顧 4
第2章 電磁理論與數值方法 11
2.1 高斯光束(Gaussian beam) 11
2.2 Maxwell 應力張量 13
2.3 手徵性與圓偏振二色性 14
第3章 數值模擬結果分析與討論 15
3.1 奈米金球二聚體對聚苯乙烯珠抓取行為分析 15
3.1.1 單組金球二聚體 18
3.1.2 二維金球二聚體陣列 27
3.2 光誘導金奈米桿二聚體自組裝及應用 43
第4章 結論與未來展望 59
4.1 結論 59
4.2 未來展望 61
參考文獻 62
附錄 MMP擺點 65
[1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56-8, 1991.
[2]E. T. Thostenson, Z. Ren, T. W. Chou, and Technology, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol. 61(13), 1899-912, 2001.
[3]X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115-20, 2006.
[4]A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Refregiers, and J. Kardos, “Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy,” Proc. Natl. Acad. Sci. USA 112(24), E3095-103, 2015.
[5]S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503-6, 2002.
[6]S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451(7178), 553-6, 2008.
[7]M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nat. Mater. 2(9), 577-85, 2003.
[8]J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles.” Nano Lett. 11(2), 701-5, 2011.
[9]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. (abingdon) 4(21), 396-402, 1902.
[10]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. A 31(3), 213-22, 1941.
[11]R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874, 1957.
[12]E. Betzig, and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189-95, 1992.
[13]C. Girard, and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59(5), 657, 1996.
[14]S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797-862, 2007.
[15]B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuator A Phys. 4 299-304, 1983.
[16]H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357, 1999.
[17]E. Hutter, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685-706, 2004.
[18]K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828-57, 2011.
[19]A. Ashkin, “Trapping of atoms by resonance radiation pressure.” Phys. Rev. Lett. 40(12), 729, 1978.
[20]A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288-90, 1986.
[21]M. Wang, J. Dong, C. Zhou, H. Xie, W. Ni, S. Wang, H. Jin, and Q. Wang, “Reconfigurable plasmonic diastereomers assembled by DNA origami,” ACS Nano 13(12), 13702-8, 2019.
[22]W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934, 2013.
[23]L. Y. Wang, K. W. Smith, S. Dominguez-Medina, N. Moody, J. M. Olson, H. Zhang, W. S. Chang, N. Kotov, and S. Link, “Circular differential scattering of single chiral self-assembled gold nanorod dimers,” ACS Photonics 2(11), 1602-10, 2015.
[24]M. L. Nesterov, X. Yin, M. SchäFerling, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3(4), 578-83, 2016.
[25]J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett. 11(2), 701-5, 2011.
[26]A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365-70, 2008.
[27]K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13(9), 4118-22, 2013.
[28]J. Kypr, I. Kejnovska, D. Renciuk, and M. Vorlickova, “Circular dichroism and conformational polymorphism of DNA,” Nucleic Acids Res. 37(6), 1713-25, 2009.
[29]A. Kuzyk, Y. Yang, X. Duan, S. Stoll, A. O. Govorov, H. Sugiyama, M. Endo, and N. Liu, “A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function,” Nat. Commun. 7, 10591, 2016.
[30]A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862-6, 2014.
[31]U. Levy, and Y. Silberberg, “Weakly diverging to tightly focused Gaussian beams: a single set of analytic expressions,” J. Opt. Soc. Am. A 33(10), 1999-2009, 2016.
[32]J. J. Funke, P. Ketterer, C. Lieleg, S. Schunter, P. Korber, H. Dietz, “Uncovering the forces between nucleosomes using DNA origami.” J. Phys. Chem. C, 123, 7347-55, 2019
[33]Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials.” Chem. Commun, 52(10), 2047-50, 2016
[34]G. Klös, M. Miola, and D. S. Sutherland, “Increased refractive index sensitivity by circular dichroism sensing through reduced substrate effect,” J. Phys. Chem. C, 123(12), 7347-55, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊