[1]S. M. Milas, J. Y. Ye, T.B. Norris, K. W. Hollman, S. Y. Emelianov, M. O’Donnell, “Acoustic characterization of microbubble dynamics in laser-induced optical breakdown,” IEEE 50(5), 517-522, 2003.
[2]M. J. Zohdy, C. Tse, J. Y. Ye, M. O’Donnell, “Acoustic estimation of thermal distribution in the vicinity of femtosecond laser-induced optical breakdown,” IEEE 53(11), 2347-2355, 2006.
[3]S. R. Aglyamov, A. B. Karpiouk, F. Bourgeois, A. B. Yakar, S. Y. Emelianov, “Ultrasound measurements of cavitation bubble radius for femto-second laser-induced breakdown in water,” Opt. Lett. 33(12),1357–1359, 2008.
[4]A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280, 1999.
[5]R. Petkovsek, P. Gregorcic, J. Mozina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Measure Science and Technology 18,(9) 2972–2978, 2007.
[6]S. I. Kudryashov, V. D. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E 78, 036404, 2008.
[7]D. Tiwari, Y. Bellouard, A. Dietze, M. Ren, E. Rubingh, E. Meinders, “Dynamical observation of femtosecond-laser-induced bubbles in water using a single laser source for probing and sensing,” Appl. Phys. Express 3(12), 127101, 2010.
[8]X. Liu, Y. Hou, X. Liu, J. He, J. Lu, X. Ni, “Oscillation characteristics of a laser-induced cavitation bubble in water at different temperatures,” Optik 122(14), 1254–1257, 2011.
[9]A. B. Karpiouk, S. R. Aglyamov, F. Bourgeois, A. B. Yakar, S. Y. Emelianov, “Quantitative ultrasound method to detect and monitor laser- induced cavitation bubbles,” J. Biomed 13(3), 034011, 2008.
[10]R. Petkovseka, P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J Appl. Phys. A 102(4), 044909, 2007.
[11]C. S. Peel, X. Fang, S. R. Ahmad, “Dynamics of laser-induced cavitation in liquid,” J. Appl. Phys. A 103, 1131–1138, 2011.
[12]J. W. Liaw, S.W. Tsai, H. H. Lin, T. C. Yen, B. R. Chen, “Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid,” J. Quant. Spectroscopy Radiative Transfer 113(17), 2234–2242, 2012.
[13]M. G. González, X. Liu, R. Niessner, C. Haisch, “Strong size-dependent photoacoustic effect on gold nanoparticles by laser-induced nanobubbles,” Appl. Phys. Lett. 96, 174104, 2010.
[14]E. Y. Lukianova-Hleb, D. O. Lapotko, “Experimental techniques for imaging measuring transient vapor nanobubbles,” Appl. Phys. Lett. 101, 264102, 2012
[15]A. B. Karpiouk, F. Bourgeois, S. R. Aglyamov, A. Ben-Yakar, and S. Y. Emelianov, “Development of ultrasound technique to detect and characterize laser-induced microbubbles,” SPIE. BIOS. 6435, 64350P, 2007.
[16]W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor Regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003, 2011.
[17]Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496-501, 2007.
[18]H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. T. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, “Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34(22), 5651–5660, 2013.
[19]D. Lapotko, “Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications,” Nanomed. 4(7), 813-845, 2009.
[20]V. K. Pustovalov, A. S. Smetannikov, V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775-792, 2008.
[21]D. Werner, T. Ueki, S. Hashimoto, “Methodological improvement in pulsed laser-induced size reduction of aqueous colloidal gold nanoparticles by applying high pressure,” J. Phys. Chem. C 116, 5482−5491, 2012.
[22]S. Hashimotoa, D. Wernera, T. Uwadab, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat manage-ment, and nanofabrication,” J. Photochemistry and Photobiology C 13, 28–54, 2012.
[23]M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291-304, 2011.
[24]S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G. N. Thalmann, C. Brandenberger, A. Bailey, M. Frenz, “Mechanisms of nanoparticle-mediated photomechanical cell damage,” Biomed. Opt. Express 3(3), 435-446, 2012.
[25]E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotech. 21, 085102, 2010.
[26]P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103, 2016.
[27]L. Fu, S. Wang, J. Xin, S. Wang, C. Yao, Z. Zhang, J. Wang, “Experimental investigation on multiple breakdown in water induced by focused nanosecond laser,” Opt. Express 26(22), 28560-28575, 2018.
[28]M. G. González, X. Liu, R. Niessner, C. Haisch, “Strong size-dependent photoacoustic effect on gold nanoparticles by laser-induced nanobubbles,” Appl. Phys. Lett. 96, 174104, 2010.
[29]D. O. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17, 2538–2556, 2009.
[30]E. Y. Lukianova-Hleb and D. O. Lapotko, “Experimental techniques for imaging measuring transient vapor nanobubbles” Appl. Phys. Lett. 101, 264102, 2012.
[31]É. Bulais, R. Lachaine, M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12, 4763-4769, 2012.
[32]É. Bulais, R. Lachaine, M. Meunier, “Plasmonics for pulsed-laser cell nanosur gery: Fundamentals and applications,” J. Phys. Chem. C 117, 9386–9396, 2013.
[33]A. B. Karpiouk, F. Bourgeois, S. R. Aglyamov, A. Ben-Yakar, and S.Y. Emelianov, “Development of ultrasound technique to detect and characterize laser-induced microbubbles,” SPIE. BIOS. 6435, 64350P, 2007.
[34]S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701-705, 1999.
[35]B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanoorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(3), 1957–1962, 2003.
[36]W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor Regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003, 2011.
[37]P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine”, J. Phys. Chem. B 110(4), 7238-7248, 2006.
[38]T. R. Kuo, V. A. Hovhannisyan, Y. C. Chao, S. L. Chao, S. J. Chiang, S. J. Lin, C. Y. Dong, C. C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation”, J. Am. Chem. Soc. 132(40), 14163–14171, 2010.
[39]L. Tong, Q. Wei, A. Wei, J.X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects”, Photochem. Photobiol. 85, 21–32, 2009.
[40]A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, C. J. Murphy, “Gold nano-rods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64(2), 190–199, 2012.
[41]J.-W. Liaw, S.-W. Tsai, K.-L. Chen, F.-Y. Hsu, “Single-photon and two-photon cellular imagings of gold nanorods and dyes”, J. Nanosci. Nanotechnol. 10, 467–473, 2010.
[42]L. C. Chen, C. W. Wei, J. S. Souris, S. H. Cheng, C. T. Chen, C. S. Yang, P. C. Li, L. W. Lo, “Enhanced photoacoustic stability of gold nanorods by silica matrix confinement,” J. Biomed. Opt. 15, 016010, 2010.
[43]Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354, 2011.
[44]X. Liu, M. G. González, R. Niessner, C. Haisch, “Strong size-dependent photo-acoustic effect on gold nanoparticles: a sensitive tool for aggregation-based color-imetric protein detection,” Anal. Meth. 4, 309–311, 2012.
[45]T. S. Troutman, J. K. Barton, M. Romanowski, “Biodegradable plasmon resonant nanoshells,” Adv. Mater. 20, 2604-2608, 2008.
[46]C. Kojima, Y. Hirano, E. Yuba, A. Harada, K. Kono, “Preparation and characterization of complexes of liposomes with gold nanoparticles,” Colloids and Surfaces B: Biointerfaces 66(2), 246–252, 2008.
[47]T. S. Troutman, S. J. Leung, M. Romanowski, “Light-induced content release from plasmon-resonant liposomes,” Adv. Mater. 21, 2334–2338, 2009.
[48]L. J. E. Anderson, E. Hansen, E. Y. L. Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144(2), 151-158, 2010.
[49]G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposomal release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177, 2008.
[50]D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nano medicine: Nanotechnology, Biology, and Medicine 6, 161–169, 2010.
[51] N. Lozano, W. T. A-Jamal, A. Taruttis, N. Beziere, N. C. Burton, J. V. D. Bossche, M. Mazza, E. Herzog, V. Ntziachristos, K. Kostarelos, “Liposome−goldnanorod hybrids for high-resolution visualization deep in tissues,” J. Am. Chem. Soc. 134, 13256−13258, 2012.
[52]T. K. Sau, A. S. Urban, S. K. Dondapati, M. Fedoruk, M. R. Horton, A. L. Rogach, F. D. Stefani, J. O. Radler, J. Feldmann, “Controlling loading and optical properties of gold nanoparticles on liposome membranes,” Colloids and Surfaces A 342, 92–96, 2009.
[53]A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Radler, F. D. Stefani, J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9(8), 2903-2908, 2009.
[54]H. Ba, J. Rodrı´guez-Ferna´ndez, F. D. Stefani, J. Feldmann, “Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding,” Nano Lett. 10, 3006–3012, 2010.
[55]A. S. Urban, T. Pfeiffer, M. Fedoruk, A. A. Lutich, J. Feldmann, “Single-step injection of gold nanoparticles through phospholipid membranes,” ACS Nano 5(5), 3585–3590, 2011.
[56]L. Paasonen, T. Laaksonen, C. Johans, M. Yliperttula, K. Kontturi, A. Urtti, “Goldnanoparticles enable selective light-induced contents release from liposomes,” J. Controlled Release 122, 86–93, 2007.
[57]L. Paasonen, T. Sipilä, A. Subrizi, P. Laurinmäki, S. J. Butcher, M. Rappolt, A. Yaghmur, A. Urtti, M. Yliperttula, “Gold-embedded photosensitive liposomes fordrug delivery: Triggering mechanism and intracellular release,” J. Controlled Release 147, 136-143, 2010.
[58]S. H. Park, S. G. Oh, J. Y. Mun, S. S. Han, “Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities,” Colloids and Surfaces B: Biointerfaces 48, 112–118, 2006.
[59]K. Hong, D. S. Friend, C. G. Glabe, D. Papahadjopoulos, “Liposome containing colloidal gold are a useful probe of liposome-cell interactions,” Biochim. Biophys. Acta. 732, 320-323, 1983.
[60]G. V. Orsingera, S. J. Leunga, M. Romanowski, “Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules,” SPIE. BIOS. 8587, 85870M, 2013.
[61]M. Qu, S. Mallidi, M. Mehrmohammadi, R. Truby, “Magneto-photo-acoustic imaging,” Biomed Opt. Express. 2(2), 385–396, 2011.
[62]D. Yong, Ng, Lee, X. Bosman, C. C. Chan, “Multi-layered liposomes as optical resonators. progress in biomedical optics and imaging”, SPIE. BIOS. 8598, 859803, 2013.
[63]G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701, 2008.
[64]J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885, 2010.
[65]A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64(2), 190-199, 2012.
[66]S. Y. Yu, S. W. Tsai, Y. J. Chen, J. W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid,” Microelectronic Engineering 138, 102-106, 2015
[67] 林宏勳(民一〇一)。金奈米粒子對雷射誘發微氣泡的光聲效應與增強細胞光損傷之影響,長庚大學機械工程研究所,碩士論文,已出版。