跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 03:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜長軒
研究生(外文):Chang-Hsuan Tu
論文名稱:金膠體溶液中雷射誘發微氣泡與奈米氣泡之光聲效應
論文名稱(外文):Photoacoustic Effect of Laser-Induced Microbubble and Nanobubbles in Gold Colloid
指導教授:郭茂坤郭茂坤引用關係廖駿偉
指導教授(外文):Mao-Kuen KouJiunn-Woei Liaw
口試委員:鄧崇任
口試委員(外文):Tsung-Jen Teng
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:光崩潰效應金奈米桿表面電漿子共振微氣泡奈米氣泡光聲效應脈衝雷射法拉第-廷得耳效應光熱效應
外文關鍵詞:Optical breakdownGold nanorodSurface plasmon resonanceMicrobubbleNanobubblePhotoacoustic effectPulsed laserFaraday-Tyndall effectPhotothermal effect
DOI:10.6342/NTU202003111
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討在金奈米桿(gold nanorod; GNR)膠體溶液中脈衝雷射誘發生成的氣泡特性,依其生成機制分為光崩潰(optical breakdown)效應造成的微氣泡(microbubble)以及表面電漿子共振(surface plasmon resonance; SPR)效應造成的奈米氣泡(nanobubble)。
首先發現水中加入GNR確實可以有效降低微氣泡的閾值,尤其在長波長脈衝雷射的降幅更明顯。當雷射波長接近GNR的SPR共振波長與GNR濃度增加時,可以加強此效應,但同時也會受到更多的GNR之強散射效應法拉第-廷得耳效應(Faraday-Tyndall effect),因此在SPR共振波峰附近,選擇適當的雷射波長,對於產生微氣泡可有較佳的效果。本研究以兩種具不同SPR (718 nm, 966 nm)的GNR水溶液為實驗樣品。
使用不同波長的奈秒脈衝雷射並以一20倍物鏡聚焦,再以超音波探頭量測微氣泡的光聲(photoacoustic)瞬時訊號,以及利用氦氖雷射結合光偵測器同步量測微氣泡成形過程造成的動態變化;穿透試管的光強度因光遮斷大小而隨時間之變化曲線。依據量測結果將微氣泡分成三種型態: 單氣泡、合成氣泡、分裂氣泡。調整脈衝雷射的能量由低到高,產生微氣泡型態的機率由大到小,分別為單氣泡、合成氣泡、分裂氣泡。單氣泡和分裂氣泡的壽命(lifetime)皆隨脈衝能量增加而增加,但增長行為逐漸趨緩。另一方面,因為GNR的法拉第-廷得耳效應,單氣泡和分裂氣泡的壽命與GNR濃度則呈負相關。此外,合成氣泡的壽命則與相鄰氣泡的間距及接觸時間有關,且只發生於長波長雷射激發的情況。
另外,當GNR膠體溶液被脈衝雷射光照射時,每個金奈米粒子都會因SPR效應,產生光熱(photothermal)效應,導致在其周圍產生一奈米氣泡,並伴隨衝擊波(shockwave),即光聲(photoacoustic)訊號,若吸收的能量相同,則奈米氣泡群將一起成長及消滅。我們以較高濃度的GNR膠體溶液(例如200 ppm)為例,在能量為80 mJ的脈衝雷射(波長532 nm)照射瞬間,由光遮斷量測的時域訊號前期,可發現一約55 nsec的光遮斷時段,即奈米氣泡群的平均壽命,以此估算其平均的最大半徑約為195 nm,並且這些奈米氣泡呈現多周期的消長現象。此外將超音波訊號經快速傅立葉轉換(Fast Fourier Transform; FFT),可分析頻率域的特性,藉由特定截止頻率的濾波,可以將微氣泡和奈米氣泡的訊號分離。
This thesis aims to study the characteristics of laser-induced bubbles in gold nanorod (GNR) colloid. Two kinds of bubble are investigated: the microbubble due to the optical breakdown, and the nanobubble due to the surface plasmon resonance (SPR).
First of all, we find that the energy threshold of pulsed laser to induce microbubble in water can be reduced by adding gold nanorods (GNRs). In particular, the threshold becomes lower as a long-wavelength laser is used. When the wavelength is near the SPR peak and the concentration of GNR is raised, the effect of reducing threshold by GNR becomes more significant. However, the Faraday-Tyndall effect of GNR colloid, which is a strong light scattering, also becomes more severe. Therefore, it is a trade-off for selecting a proper wavelength to obtain an optimal performance for inducing microbubble. Two types of GNR with different SPR (718 nm, 966 nm) are prepared for experiment.
A 12-nsec pulsed laser with tunable wavelength combined with an objective lens with a magnification of 20 is used to irradiate GNR colloid for generating microbubble. For the measurement, we utilize an ultrasound transducer to measure the transient photoacoustic signal, and a probing laser (He-Ne laser) combined with a photodetector to detect the light’s intensity related to the dynamic formation of microbubbles/nanobubbles. According to the features of these signals, we can divide the microbubbles into three types: single bubble, coalesced bubble and split bubble. As we increase the energy of pulsed laser, the probability of generating a single bubble is higher than those of coalesced and split bubbles; the split one always needs higher energy to be induced. The lifetimes of single bubble and split one are proportional to the pulse energy, while they approach a constant. However, they are inversely proportional to the concentration of GNR due to the Faraday-Tyndall effect of GNR. For the coalesced bubble, which is found only for the cases irradiated by a long-wavelength laser, the lifetime is related to the contact time between the adjacent bubbles.
When GNR colloid is irradiated by a pulsed laser beam without an objective, nanobubble around each GNR is generated at the beginning of irradiation due to the plasmonic photothermal effect. A shockwave is also induced, accompanying with these nanobubbles; this is the photoacoustic effect. If the absorbed energy by each NGR is the same, the lifetimes of nanobubbles are the same. For example, a GNR colloid of high concentration (e.g. 200 ppm) is irradiated by a pulsed laser of 532 nm with an energy of 80 mJ. At the initial state of photodetector’s transient signal, a 55-nsec period of light blocking is observed, indicating the average lifetime of nanobubbles. Based on the lifetime, an estimated maximum of radius of nanobubble is about 195 nm. In addition, the multi-cycle process of nanobubble growth was observed. Alternatively, we characterize the nanobubble by using the spectrum analysis of the ultrasonic signal, through the fast Fourier transform. We can use a filter with a specific cut-off frequency for ultrasonic signal in frequency domain to separate the component of nanobubble from that of microbubble.
口試委員會審定書 i
致謝 ii
摘要 iiiiii
Abstract iv
目錄 vii
圖目錄 iix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 12
第二章 實驗原理 13
2.1光崩潰效應 13
2.2 Rayleigh-Plesset 模型 13
2.3表面電漿子共振 15
2.4 法拉第-廷得耳效應 16
第三章 實驗方法 17
3.1 實驗儀器與元件 17
3.2 金奈米桿樣本 18
3.3 實驗架構與步驟 20
第四章 實驗結果與討論 22
4.1 微氣泡 22
4.1.1 金奈米桿對閾值之影響 22
4.1.2 光聲效應判讀與分類 24
4.1.3 不同SPR與濃度之特性討論 29
4.1.3.1 單氣泡型微氣泡 33
4.1.3.2 合成型微氣泡 35
4.1.3.3 分裂型微氣泡 40
4.2 奈米氣泡 42
4.2.1光遮斷訊號 42
4.2.2 超聲波訊號FFT分析 46
第五章 結論 52
參考文獻 53
[1]S. M. Milas, J. Y. Ye, T.B. Norris, K. W. Hollman, S. Y. Emelianov, M. O’Donnell, “Acoustic characterization of microbubble dynamics in laser-induced optical breakdown,” IEEE 50(5), 517-522, 2003.
[2]M. J. Zohdy, C. Tse, J. Y. Ye, M. O’Donnell, “Acoustic estimation of thermal distribution in the vicinity of femtosecond laser-induced optical breakdown,” IEEE 53(11), 2347-2355, 2006.
[3]S. R. Aglyamov, A. B. Karpiouk, F. Bourgeois, A. B. Yakar, S. Y. Emelianov, “Ultrasound measurements of cavitation bubble radius for femto-second laser-induced breakdown in water,” Opt. Lett. 33(12),1357–1359, 2008.
[4]A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280, 1999.
[5]R. Petkovsek, P. Gregorcic, J. Mozina, “A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations,” Measure Science and Technology 18,(9) 2972–2978, 2007.
[6]S. I. Kudryashov, V. D. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E 78, 036404, 2008.
[7]D. Tiwari, Y. Bellouard, A. Dietze, M. Ren, E. Rubingh, E. Meinders, “Dynamical observation of femtosecond-laser-induced bubbles in water using a single laser source for probing and sensing,” Appl. Phys. Express 3(12), 127101, 2010.
[8]X. Liu, Y. Hou, X. Liu, J. He, J. Lu, X. Ni, “Oscillation characteristics of a laser-induced cavitation bubble in water at different temperatures,” Optik 122(14), 1254–1257, 2011.
[9]A. B. Karpiouk, S. R. Aglyamov, F. Bourgeois, A. B. Yakar, S. Y. Emelianov, “Quantitative ultrasound method to detect and monitor laser- induced cavitation bubbles,” J. Biomed 13(3), 034011, 2008.
[10]R. Petkovseka, P. Gregorcic, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J Appl. Phys. A 102(4), 044909, 2007.
[11]C. S. Peel, X. Fang, S. R. Ahmad, “Dynamics of laser-induced cavitation in liquid,” J. Appl. Phys. A 103, 1131–1138, 2011.
[12]J. W. Liaw, S.W. Tsai, H. H. Lin, T. C. Yen, B. R. Chen, “Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid,” J. Quant. Spectroscopy Radiative Transfer 113(17), 2234–2242, 2012.
[13]M. G. González, X. Liu, R. Niessner, C. Haisch, “Strong size-dependent photoacoustic effect on gold nanoparticles by laser-induced nanobubbles,” Appl. Phys. Lett. 96, 174104, 2010.
[14]E. Y. Lukianova-Hleb, D. O. Lapotko, “Experimental techniques for imaging measuring transient vapor nanobubbles,” Appl. Phys. Lett. 101, 264102, 2012
[15]A. B. Karpiouk, F. Bourgeois, S. R. Aglyamov, A. Ben-Yakar, and S. Y. Emelianov, “Development of ultrasound technique to detect and characterize laser-induced microbubbles,” SPIE. BIOS. 6435, 64350P, 2007.
[16]W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor Regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003, 2011.
[17]Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496-501, 2007. 
[18]H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. T. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, “Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34(22), 5651–5660, 2013.
[19]D. Lapotko, “Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications,” Nanomed. 4(7), 813-845, 2009.
[20]V. K. Pustovalov, A. S. Smetannikov, V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775-792, 2008.
[21]D. Werner, T. Ueki, S. Hashimoto, “Methodological improvement in pulsed laser-induced size reduction of aqueous colloidal gold nanoparticles by applying high pressure,” J. Phys. Chem. C 116, 5482−5491, 2012.
[22]S. Hashimotoa, D. Wernera, T. Uwadab, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat manage-ment, and nanofabrication,” J. Photochemistry and Photobiology C 13, 28–54, 2012.
[23]M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291-304, 2011.
[24]S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G. N. Thalmann, C. Brandenberger, A. Bailey, M. Frenz, “Mechanisms of nanoparticle-mediated photomechanical cell damage,” Biomed. Opt. Express 3(3), 435-446, 2012.
[25]E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotech. 21, 085102, 2010.
[26]P. Cui, Q. X. Wang, S. P. Wang, and A. M. Zhang, “Experimental study on interaction and coalescence of synchronized multiple bubbles,” Phys. Fluids 28(1), 012103, 2016.
[27]L. Fu, S. Wang, J. Xin, S. Wang, C. Yao, Z. Zhang, J. Wang, “Experimental investigation on multiple breakdown in water induced by focused nanosecond laser,” Opt. Express 26(22), 28560-28575, 2018.
[28]M. G. González, X. Liu, R. Niessner, C. Haisch, “Strong size-dependent photoacoustic effect on gold nanoparticles by laser-induced nanobubbles,” Appl. Phys. Lett. 96, 174104, 2010.
[29]D. O. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express 17, 2538–2556, 2009.
[30]E. Y. Lukianova-Hleb and D. O. Lapotko, “Experimental techniques for imaging measuring transient vapor nanobubbles” Appl. Phys. Lett. 101, 264102, 2012.
[31]É. Bulais, R. Lachaine, M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12, 4763-4769, 2012.
[32]É. Bulais, R. Lachaine, M. Meunier, “Plasmonics for pulsed-laser cell nanosur gery: Fundamentals and applications,” J. Phys. Chem. C 117, 9386–9396, 2013.
[33]A. B. Karpiouk, F. Bourgeois, S. R. Aglyamov, A. Ben-Yakar, and S.Y. Emelianov, “Development of ultrasound technique to detect and characterize laser-induced microbubbles,” SPIE. BIOS. 6435, 64350P, 2007.
[34]S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701-705, 1999.
[35]B. Nikoobakht, M. A. El-Sayed, “Preparation and growth mechanism of gold nanoorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(3), 1957–1962, 2003.
[36]W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor Regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003, 2011.
[37]P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine”, J. Phys. Chem. B 110(4), 7238-7248, 2006.
[38]T. R. Kuo, V. A. Hovhannisyan, Y. C. Chao, S. L. Chao, S. J. Chiang, S. J. Lin, C. Y. Dong, C. C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation”, J. Am. Chem. Soc. 132(40), 14163–14171, 2010.
[39]L. Tong, Q. Wei, A. Wei, J.X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects”, Photochem. Photobiol. 85, 21–32, 2009.
[40]A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, C. J. Murphy, “Gold nano-rods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64(2), 190–199, 2012.
[41]J.-W. Liaw, S.-W. Tsai, K.-L. Chen, F.-Y. Hsu, “Single-photon and two-photon cellular imagings of gold nanorods and dyes”, J. Nanosci. Nanotechnol. 10, 467–473, 2010.
[42]L. C. Chen, C. W. Wei, J. S. Souris, S. H. Cheng, C. T. Chen, C. S. Yang, P. C. Li, L. W. Lo, “Enhanced photoacoustic stability of gold nanorods by silica matrix confinement,” J. Biomed. Opt. 15, 016010, 2010.
[43]Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354, 2011.
[44]X. Liu, M. G. González, R. Niessner, C. Haisch, “Strong size-dependent photo-acoustic effect on gold nanoparticles: a sensitive tool for aggregation-based color-imetric protein detection,” Anal. Meth. 4, 309–311, 2012.
[45]T. S. Troutman, J. K. Barton, M. Romanowski, “Biodegradable plasmon resonant nanoshells,” Adv. Mater. 20, 2604-2608, 2008.
[46]C. Kojima, Y. Hirano, E. Yuba, A. Harada, K. Kono, “Preparation and characterization of complexes of liposomes with gold nanoparticles,” Colloids and Surfaces B: Biointerfaces 66(2), 246–252, 2008.
[47]T. S. Troutman, S. J. Leung, M. Romanowski, “Light-induced content release from plasmon-resonant liposomes,” Adv. Mater. 21, 2334–2338, 2009.
[48]L. J. E. Anderson, E. Hansen, E. Y. L. Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Controlled Release 144(2), 151-158, 2010.
[49]G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposomal release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177, 2008.
[50]D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nano medicine: Nanotechnology, Biology, and Medicine 6, 161–169, 2010.
[51] N. Lozano, W. T. A-Jamal, A. Taruttis, N. Beziere, N. C. Burton, J. V. D. Bossche, M. Mazza, E. Herzog, V. Ntziachristos, K. Kostarelos, “Liposome−goldnanorod hybrids for high-resolution visualization deep in tissues,” J. Am. Chem. Soc. 134, 13256−13258, 2012.
[52]T. K. Sau, A. S. Urban, S. K. Dondapati, M. Fedoruk, M. R. Horton, A. L. Rogach, F. D. Stefani, J. O. Radler, J. Feldmann, “Controlling loading and optical properties of gold nanoparticles on liposome membranes,” Colloids and Surfaces A 342, 92–96, 2009.
[53]A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Radler, F. D. Stefani, J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9(8), 2903-2908, 2009.
[54]H. Ba, J. Rodrı´guez-Ferna´ndez, F. D. Stefani, J. Feldmann, “Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding,” Nano Lett. 10, 3006–3012, 2010.
[55]A. S. Urban, T. Pfeiffer, M. Fedoruk, A. A. Lutich, J. Feldmann, “Single-step injection of gold nanoparticles through phospholipid membranes,” ACS Nano 5(5), 3585–3590, 2011.
[56]L. Paasonen, T. Laaksonen, C. Johans, M. Yliperttula, K. Kontturi, A. Urtti, “Goldnanoparticles enable selective light-induced contents release from liposomes,” J. Controlled Release 122, 86–93, 2007.
[57]L. Paasonen, T. Sipilä, A. Subrizi, P. Laurinmäki, S. J. Butcher, M. Rappolt, A. Yaghmur, A. Urtti, M. Yliperttula, “Gold-embedded photosensitive liposomes fordrug delivery: Triggering mechanism and intracellular release,” J. Controlled Release 147, 136-143, 2010.
[58]S. H. Park, S. G. Oh, J. Y. Mun, S. S. Han, “Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities,” Colloids and Surfaces B: Biointerfaces 48, 112–118, 2006.
[59]K. Hong, D. S. Friend, C. G. Glabe, D. Papahadjopoulos, “Liposome containing colloidal gold are a useful probe of liposome-cell interactions,” Biochim. Biophys. Acta. 732, 320-323, 1983.
[60]G. V. Orsingera, S. J. Leunga, M. Romanowski, “Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules,” SPIE. BIOS. 8587, 85870M, 2013.
[61]M. Qu, S. Mallidi, M. Mehrmohammadi, R. Truby, “Magneto-photo-acoustic imaging,” Biomed Opt. Express. 2(2), 385–396, 2011.
[62]D. Yong, Ng, Lee, X. Bosman, C. C. Chan, “Multi-layered liposomes as optical resonators. progress in biomedical optics and imaging”, SPIE. BIOS. 8598, 859803, 2013.
[63]G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701, 2008.
[64]J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, “Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery,” Adv. Mater. 22(8), 880–885, 2010.
[65]A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64(2), 190-199, 2012.
[66]S. Y. Yu, S. W. Tsai, Y. J. Chen, J. W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid,” Microelectronic Engineering 138, 102-106, 2015
[67] 林宏勳(民一〇一)。金奈米粒子對雷射誘發微氣泡的光聲效應與增強細胞光損傷之影響,長庚大學機械工程研究所,碩士論文,已出版。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊