跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅正翰
研究生(外文):Cheng-Han Lou
論文名稱:有限長旋轉圓柱於厚邊界層中之馬格努斯效應
論文名稱(外文):Magnus effect of a rotating circular cylinder of finite span immersed in flow with thick boundary layer
指導教授:張建成張建成引用關係朱錦洲
指導教授(外文):Chien-Cheng ChangChin-Chou Chu
口試委員:張家歐郭志禹周逸儒
口試委員(外文):Chia-Ou ChangChih-Yu KuoYi-Ju Chou
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:87
中文關鍵詞:Magnus 效應有限圓柱轉速比低雷諾數渦漩剝離
外文關鍵詞:Magnus effectfinite cylinderspin ratiovortex shedding
DOI:10.6342/NTU202003402
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討厚邊界層中,有限長旋轉圓柱之 Magnus 效應。藉由分析圓柱流場中的無因次參數,如:雷諾數 (Reynolds number, Re)、斯特勞哈爾數 (Strouhal number, St)、長寬比 (Aspect ratio, AR)、轉速比 (Rotation ratio, α) 以及高度比 (Gap ratio, SG)。研究不同條件下,Magnus 效應對流場造成的影響。
實驗中,所使用之水洞為一開放式的渠道,並以甘油作為工作液體。並以長 188 (mm),直徑 30 (mm),AR=6.3,且與渠道壁間距 12 (mm) 之旋轉圓柱,在 Re=70-150、α=0-2、SG=3.6 之參數範圍中,使用三種不同方法,對流場進行分析:
第一,透過雷射光頁將流場顯影,再利用 PIV 影像分析法,繪製出流場概況。
第二,利用 LDA 雷射系統,對流場中特定位置之示蹤粒子,進行速度量測。
第三,藉由 Load Cell 量測不同參數下,圓柱所受之升、阻力。
同時,以商業軟體 Ansys/Fluent 進行數值模擬,將所得之計算結果,與實驗結果進行比較,完成最後的驗證。
本研究的結果顯示,3D 流場有許多現象與 2D 流場出現不同的區別:
I α=0
因AR值較低,渦漩剝離現象延後至 Re=70 時,才發生。
II α≠0
一旦圓柱開始旋轉,渦漩及停滯點皆會向上發生偏轉。隨著轉速比的增加,平均升力係數呈線性趨勢增加;平均阻力係數則先下降後增加。當轉速達臨界轉速比時,圓柱出現渦漩抑制,尾流不再發生震盪。
This article is to report on an experimental investigation of the Magnus effect of a horizontally lying circular cylinder, rotating in flow with thick boundary layer.
The experiments were performed in an open water channel with using the glycerol as the working fluid.
The aspect ratio (AR=L⁄D) of the cylinder is fixed at 6.3, and the gap ratio (SG=H/D) is fixed at 3.6. Furthermore, the Reynolds number (Re=ρDU⁄μ) varies from 70 to 150, and the spin ratio (α=Ωa⁄U) varies from 0 to 2 which rotates in counterclockwise.
In these regime of parameters, the flow is found to be different from the 2D model about the middle cross section:
I α=0
Because of the lower aspect ratio, the vortex shedding is delayed. But it still can be found at Re≥70.
II α≠0
The flow becomes unsymmetric as soon as the cylinder starts rotating. Then, the stagnation point and the vortex in the wake will deflect upwardly. As the spin ratio becomes larger, the coefficient of the mean lift force will increase linearly; the coefficient of the mean drag force will go down slightly in the beginning, and then increase dramatically. If the spin ratio becomes larger and reaches the critical value, the vortex shedding will be suppressed suddenly.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 序論 1
1.1 研究背景與動機 1
1.2 靜止圓柱相關文獻 2
1.2.1 卡門渦街 (Kármán vortex street) 2
1.2.2 低雷諾數下之卡門渦街 3
1.2.3 高雷諾數下之卡門渦街 5
1.2.4 卡門渦街相關文獻總結 6
1.3 Magnus 效應相關文獻 7
1.3.1 低雷諾數下,圓柱周圍之 Magnus 效應相關文獻 7
1.3.2 高雷諾數下,圓柱周圍之 Magnus 效應相關文獻 12
1.3.3 Magnus 效應相關文獻總結 14
第二章 基礎理論 15
2.1 勢流理論 15
2.1.1 勢流理論 15
2.1.2 基本勢流解 16
2.1.3 勢流分析 21
2.2 黏性流理論 23
2.2.1 黏性流理論 23
2.2.2 黏性流分析 28
第三章 實驗方法 35
3.1 實驗設備 35
3.1.1 水平式循環水洞 35
3.1.2 微細氣泡產生器 36
3.1.3 高速攝影機 37
3.1.4 雷射光頁產生器(Illumination) 39
3.1.5 數位單眼相機 40
3.1.6 LDA雷射系統 41
3.1.7 Load Cell 42
3.1.8 音叉式黏度計 42
3.1.9 圓柱系統 44
3.2 實驗架設 45
3.3 實驗方法 48
3.3.1 雷射光頁顯影 48
3.3.2 粒子影像測速 48
3.3.3 PIVlab 49
3.3.4 LDA 52
3.3.5 Load Cell 53
第四章 數值方法 54
4.1 網格建構 54
4.1.1 網格類型 54
4.1.2 網格設定 55
4.1.3 邊界條件 56
4.2 控制方程式 56
4.3 數值方法 56
4.3.1 空間離散 57
4.3.2 時間離散 57
4.3.3 壓力-速度耦合關係處理 59
第五章 結果與討論 60
5.1 驗證分析 60
5.1.1 水洞量測 60
5.2 旋轉圓柱 67
5.2.1 速度場分析 67
5.2.2 頻率分析 74
5.2.3 受力分析 77
第六章 結論與未來展望 82
6.1 結論 82
6.1.1 Magnus effect 82
6.2 未來展望 83
參考文獻 84
1. T. Von Kármán, "Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911, 509 (1911).
2. S. Taneda, "Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers," Journal of the Physical Society of Japan 11, 302 (1956).
3. A. Roshko, "On the development of turbulent wakes from vortex streets," (1954).
4. M. S. Bloor, "The transition to turbulence in the wake of a circular cylinder," Journal of Fluid Mechanics 19, 290 (1964).
5. E. Relf, andL. F. G. Simmons, The frequency of the eddies generated by the motion of circular cylinders through a fluid (HM Stationery Office, 1924).
6. N. Delany, andN. Sorensen, "E. 1953 Low-speed drag of cylinders of various shapes," Nat. Adv. Comm. Aero., Wash., Tech. Note 3038.
7. H. Ribner, andB. Etkin, "Noise research in Canada," Proc. 1st Int. Congr. Aero. Sci., Madrid (1958).
8. A. Roshko, "Experiments on the flow past a circular cylinder at very high Reynolds number," Journal of fluid mechanics 10, 345 (1961).
9. L. J. Briggs, "Effect of spin and speed on the lateral deflection (curve) of a baseball; and the Magnus effect for smooth spheres," American Journal of Physics 27, 589 (1959).
10. H. Barkla, andL. Auchterlonie, "The Magnus or Robins effect on rotating spheres," Journal of Fluid Mechanics 47, 437 (1971).
11. J. D. Iversen, "Autorotating flat-plate wings: the effect of the moment of inertia, geometry and Reynolds number," Journal of Fluid Mechanics 92, 327 (1979).
12. S. Bailey, "Vortex Shedding form a Square Cylinder near a Wall," J. Turbulence 3, 1 (2003).
13. A. Massaguer, E. Massaguer, T. Pujol, M. Comamala, andJ. Velayos, Blade shape influence on aerodynamic efficiency of a Magnus wind turbine using particle image velocimetry (2014).
14. S. Rashidi, M. Hayatdavoodi, andJ. A. Esfahani, "Vortex shedding suppression and wake control: A review," Ocean Engineering 126, 57 (2016).
15. L. Prandtl, Application of the" magnus effect" to the wind propulsion of ships (National Advisory Committee for Aeronautics, 1926).
16. H. Badr, M. Coutanceau, S. Dennis, andC. Menard, "Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4," Journal of Fluid Mechanics 220, 459 (1990).
17. T. Tang, andD. Ingham, "On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100," Computers & fluids 19, 217 (1991).
18. Y. Chew, M. Cheng, andS. Luo, "A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme," Journal of fluid mechanics 299, 35 (1995).
19. S. Kang, H. Choi, andS. Lee, "Laminar flow past a rotating circular cylinder," Physics of Fluids 11, 3312 (1999).
20. G. H. Hu, D. J. Sun, X. Y. Yin, andB. G. Tong, "Hopf bifurcation in wakes behind a rotating and translating circular cylinder," Physics of Fluids 8, 1972 (1996).
21. D. Stojković, M. Breuer, andF. Durst, "Effect of high rotation rates on the laminar flow around a circular cylinder," Physics of fluids 14, 3160 (2002).
22. D. Stojković, P. Schön, M. Breuer, andF. Durst, "On the new vortex shedding mode past a rotating circular cylinder," Physics of Fluids 15, 1257 (2003).

23. S. Mittal, andB. Kumar, "Flow past a rotating cylinder," Journal of fluid mechanics 476, 303 (2003).
24. J. O. Pralits, L. Brandt, andF. Giannetti, "Instability and sensitivity of the flow around a rotating circular cylinder," Journal of Fluid Mechanics 650, 513 (2010).
25. F. Barnes, "Vortex shedding in the wake of a rotating circular cylinder at low Reynolds numbers," Journal of Physics D: Applied Physics 33, L141 (2000).
26. P. Satish, S. S. Patwardhan, andO. Ramesh, "Effect of steady rotation on low Reynolds number vortex shedding behind a circular cylinder," Journal of Fluids and Structures 41, 175 (2013).
27. S. S. Dol, G. A. Kopp, andR. J. Martinuzzi, "The suppression of periodic vortex shedding from a rotating circular cylinder," Journal of Wind Engineering and Industrial Aerodynamics 96, 1164 (2008).
28. S. Kumar, C. Cantu, andB. Gonzalez, "Flow past a rotating cylinder at low and high rotation rates," Journal of Fluids Engineering 133, (2011).
29. S. Mittal, "Computation of three-dimensional flows past circular cylinder of low aspect ratio," Physics of Fluids 13, 177 (2001).
30. A. Rao, J. Leontini, M. C. Thompson, andK. Hourigan, "Three-dimensionality in the wake of a rotating cylinder in a uniform flow," Journal of Fluid Mechanics 717, 1 (2013).
31. R. El Akoury, M. Braza, R. Perrin, G. Harran, andY. Hoarau, "The three-dimensional transition in the flow around a rotating cylinder," Journal of Fluid Mechanics 607, 1 (2008).
32. D. Aljure, I. Rodríguez, O. Lehmkuhl, C. D. Pérez-Segarra, andA. Oliva, "Influence of rotation on the flow over a cylinder at Re= 5000," International Journal of Heat and Fluid Flow 55, 76 (2015).
33. P. Tokumaru, andP. Dimotakis, "The lift of a cylinder executing rotary motions in a uniform flow," Journal of Fluid Mechanics 255, 1 (1993).
34. S. Mittal, "Three-dimensional instabilities in flow past a rotating cylinder," J. Appl. Mech. 71, 89 (2004).
35. T. Sengupta, A. Kasliwal, S. De, andM. Nair, "Temporal flow instability for Magnus–Robins effect at high rotation rates," Journal of Fluids and Structures 17, 941 (2003).
36. K. M. Lam, "Vortex shedding flow behind a slowly rotating circular cylinder," Journal of fluids and structures 25, 245 (2009).
37. K. Aoki, andT. Ito, "Flow characteristics around a rotating cylinder," Proceedings of the School of Engineering of Tokai University 26, 29 (2001).
38. S. Karabelas, "Large eddy simulation of high-Reynolds number flow past a rotating cylinder," International journal of heat and fluid flow 31, 518 (2010).
39. L. Perković, P. Silva, M. Ban, N. Kranjčević, andN. Duić, "Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect," Applied energy 101, 151 (2013).
40. C. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers Document No. Number, 1989.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top