|
1.Klaus D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum, 2011. : p. 30-5. 2.Choi, S., Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 1995. 231: p. 99-106. 3.Hung, Y.-H., T.-P. Teng, and B.-G. Lin, Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Experimental Thermal and Fluid Science, 2013. 44: p. 504-511. 4.Wang, X.-Q. and A.S. Mujumdar, A review on nanofluids-part I: theoretical and numerical investigations. Brazilian Journal of Chemical Engineering, 2008. 25(4): p. 613-630. 5.J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U.S. Choi, and C. J. Choi, “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” Int. J. Heat Mass Transfer, 2008. p. 2651-2656. 6.Vajjha, R.S. and D.K. Das, Specific heat measurement of three nanofluids and development of new correlations. Journal of heat transfer, 2009. 131(7): p. 071601. 7.Namburu, PK Kulkarni, DP, Dandekar, A,Das, DK, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters, 2007. 2(3): p. 67-71. 8.Zhou, S.-Q. and R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 2008. 92(9): p. 093123. 9.Bergman, T., Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. International Journal of heat and mass Transfer, 2009. 52(5): p. 1240-1244. 10.Anoop, K., T. Sundararajan, and S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region. International journal of heat and mass transfer, 2009. 52(9): p. 2189-2195. 11.Abu-Nada, E., Effects of variable viscosity and thermal conductivity of Al 2 O 3–water nanofluid on heat transfer enhancement in natural convection. International Journal of Heat and Fluid Flow, 2009. 30(4): p. 679-690. 12.Eastman, J.A, Choi, SUSLi, Sheng , Yu, W and Thompson, LJ, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 2001. 78(6): p. 718- 720. 13.Das, S.K., N. Putra, and W. Roetzel, Pool boiling characteristics of nano-fluids. International journal of heat and mass transfer, 2003. 46(5): p. 851-862. 14.S.M.S. Murshed, K.C. Leong, C.Yang, Enhanced thermal conductivity of TiO2—water based nanofluids, International Journal of Thermal Sciences, 2005. p. 367–373 15.Pak, B.C. and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 1998. 11(2): p. 151-170. 16.Brinkman, H., The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 1952. 20(4): p. 571-571. 17.Wang, X., X. Xu, and S.U. Choi, Thermal conductivity of nanoparticle-fluid mixture. Journal of thermophysics and heat transfer, 1999. 13(4): p. 474-480. 18.Q. Li, Y. Xuan, F. Yu, Experimental investigation of submerged single jet impingement using Cu–water nanofluid, Appl. Therm. Eng, 2012. p. 426–433 19.Abu-Nada, Eiyad. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int. J. Heat Fluid Flow 29, 2008. p. 242–249 20.學其妙, 流體與多孔介質雙層流域中奈米流體的熱對流穩定性分析, 臺灣大學應用力學研究所學位論文, 2017 21.Maı̈ga, S.E.B., et al., Heat transfer behaviours of nanofluids in a uniformly heated tube. Super lattices and Microstructures, 2004. 35(3): p. 543-557. 22.Xuan, Y. and W. Roetzel, Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 2000. 43(19): p. 3701-3707. 23.Buongiorno, J., Convective transport in nanofluids. Journal of Heat Transfer, 2006. 128(3): p. 240-250. 24.Tzou, D., Thermal instability of nanofluids in natural convection. International Journal of Heat and Mass Transfer, 2008. 51(11): p. 2967-2979. 25.Tzou, D., Instability of nanofluids in natural convection. Journal of Heat Transfer, 2008. 130(7): p. 072401. 26.Kuznetsov, A. and D. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transport in Porous Media, 2010. 81(3): p. 409-422. 27.Tsai, T.-H. and R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks. International Journal of Heat and Fluid Flow, 2007. 28(5): p. 1013-1026. 28.M. B. K. Moorthy and K. Senthilvadivu, Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity, Journal of Applied Mathematics, 2012. 29.D. Nield and Kuznetsov, A., The onset of convection in a horizontal nanofluid layer of finite depth. European Journal of Mechanics-B/Fluids, 2011. p. 217-223. 30.G.S. McNAB & A.MEISEN, Thermophoresis in Liquids. Journal of Colloid and Interface Science, 1973. : p. 339-346. 31.Chen, F. and C. Chen, Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transfer, 1988. 110(2): p. 403-409. 32.R. Chand, G.C. Rana, On the Onset of Thermal Convection in Rotating Nanofluid Layer Saturating a Darcy–Brinkman Porous Medium, Int. J. Heat Mass Transf. 2012 p. 5417–5424. 33.Yadav, D., J. Lee, and H.H. Cho, Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technology, 2015. 286: p. 592-601. 34.Kuznetsov, A., Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. European Journal of Mechanics-B/Fluids, 2011. 30(2): p. 156-165. 35.Z. Alloui, P. Vasseur, and M.Reggio , “Natural convection of nanofluids in a shallow cavity heated from below,” International Journal of Thermal Sciences, 2011 50(3), pp. 385–393 36.Wang, L. and J. Fan, Nanofluids research: key issues. Nanoscale research letters, 2010. 5(8): p. 1241. 37.Chang, M.-H., Stability of convection induced by selective absorption of radiation in a fluid overlying a porous layer. Physics of Fluids, 2004. 16(10): p. 3690-3698. 38.Prasher, R., et al., Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 2006. 89(13): p. 133108. 39.Jang, S.P. and S.U. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied physics letters, 2004. 84(21): p. 4316-4318. 40.D. Nield and Kuznetsov, A., The onset of convection in a horizontal nanofluid layer of finite depth:A revised model. International Journal of Heat and Mass Transfer, 2014. : p. 915-918. 41.D. Nield and Kuznetsov, A., Thermal instability in a porous medium layer saturated by a nanofluid:A revised model. International Journal of Heat and Mass Transfer, 2014. : p. 211-214. 42.D. Nield and Kuznetsov, A., The onset of convection in a horizontal nanofluid layer of finite depth. European Journal of Mechanics - B/Fluids, 2010. : p. 217-223. 43.N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids. Heat and Mass Transfer, 2003.: p. 775-784 44.G.Bardan and A.Mojtabi, On the Horton–Rogers–Lapwood convective instability with vertical vibration: Onset of convection, Physics of Fluids, 2000.
|