跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林吉成
研究生(外文):Ji-Cheng Lin
論文名稱:奈米流體在水平流體層與多孔介質層之雙層系統中熱對流穩定性分析
論文名稱(外文):Thermal instability of nanofluids in a horizontal fluid layer overlying a porous layer
指導教授:陳發林陳發林引用關係
指導教授(外文):Falin Chen
口試委員:張敏興鍾志昂羅安成
口試委員(外文):Min-Hsing ChangChih-Ang ChungAn-Cheng Ruo
口試日期:2020-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:55
中文關鍵詞:流體穩定學奈米流體多孔介質熱對流
外文關鍵詞:flow stabilitynanofluidsporous mediathermal convection
DOI:10.6342/NTU202001911
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將對流體層與多孔介質層組成的雙層系統添加奈米顆粒,並對該系統進行熱對流線性穩定性分析。主要討論的機制包括奈米流體的熱泳機制與布朗運動,以及雙層系統的厚度比例影響,其比例關係稱為厚度比,定義為流體層厚度與多孔介質層厚度的比值。
分析結果發現熱泳是一個影響系統不穩定性的重要機制,由於該參數與濃度有關,而濃度則又與溫度相關。由基態解的結果可知溫差愈大,奈米顆粒會越累積在冷端。鑒於此首先探討奈米顆粒濃度隨厚度比變化對系統的不穩定性影響。研究結果指出,當使用符合實際情況的奈米顆粒濃度時,系統是無條件不穩定的,亦溫差只要一點點就造成不穩定,但為了探討此問題的存在,因此不再探討中性穩定曲線的變化,取而代之的是觀察擾動波的成長。結果發現當系統的厚度比較小時,長波處的成長率大於短波處,代表長波對流比短波更加不穩定。對流主要發生區域在多孔介質層,稱之為多孔介質模態。而隨著厚度比增加,短波對流比長波對流不穩定,對流主要發生在流體層,稱之為流體層模態。此現象稱為系統的模態轉換。
而模態轉換的發生不僅存在於奈米顆粒濃度的改變,亦發生在如溫度差的變化與雙層系統有關之參數,其參數如孔隙率、Beavers-Joseph constant、與Darcy number,而其結果也都表明當厚度比到達一定值時,其模態皆會由多孔介質層轉變為流體層模態,其結果也符號物理的機制。
In this paper, nanoparticles will be added to a two-layer system which is consisting of a fluid layer and a porous medium layer, and the thermal convection linear stability of the system will be analyzed. The Brownian motion and thermophoretic mechanism of the nanofluids will be discussed, and also discuss the proportional effect of the two-layer system, the effect is called the depth ratio, which is defined as the ratio of the thickness of the fluid layer to the thickness of the porous medium layer.
The results found that thermophoresis is an important mechanism which affects the instability of the system. Because this parameter is related to the concentration, also the concentration is related to temperature difference. From the result of the basic state solution, it can be seen that the larger temperature difference, the more nanoparticles will accumulate at the cold side. In view of this, we first discuss the influence of nanoparticle concentration with depth ratio on the instability of the system. The results indicate that the system is unconditionally unstable when the concentration of nanoparticles in accordance with actual conditions is used, and the small temperature difference will cause instability easily. However, in order to discuss this problem, the neutral curves will not be discussed. Instead, we observe the growth rate of disturbance. It was found that when the depth ratio of the system is relatively small, the growth rate at the long wave is greater than at the short wave, which indicates that the long wave convection is more unstable than the short wave. So convection mainly occurs in the porous medium layer, which is called porous medium mode. As the depth ratio increases, short wave convection is more unstable than long wave convection, and convection mainly occurs in the fluid layer, which is called the fluid layer mode. This phenomenon is called mode conversion.
The mode conversion occurs not only in the change of nanoparticle concentration, but also in the change of temperature difference and the parameters related to the porous medium, such as porosity, Beavers-Joseph constant, and Darcy number. The results also show when the depth ratio reaches a certain value, its mode will change from the porous medium layer to the fluid layer mode.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
符號說明 viii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.3 研究動機 5
1.4 本文架構 6
第二章 理論模型 7
2.1 物理模型與基本假設 7
2.2 奈米流體模型的介紹 8
2.2.1 熱泳 (Thermophresis) 11
2.2.2 布朗運動(Brownian Motion) 12
2.3 統御方程式 13
2.3.1奈米顆粒在流體層的方程式 13
2.3.2奈米顆粒在多孔隙介質層的方程式 14
2.3.3邊界條件 16
第三章 線性穩定性分析 18
3.1 無因次化分析 18
3.1.1流體層無因次化 18
3.1.2多孔介質層無因次化 20
3.1.3邊界條件無因次化 22
3.2 穩定基態解 23
3.2.1流體層的溫度、濃度基態解 24
3.2.2多孔介質層的溫度、濃度基態解 25
3.3 線性微擾化 26
3.3.1流體層統御方程式之線性微擾化 26
3.3.2流體層統御方程式之線性微擾化 27
3.3.3邊界條件之線性微擾化 28
3.4 正規模態展開 29
3.4.1統御方程式之正規模態展開 29
3.4.2邊界條件之正規模態展開 31
3.5 數值方法 32
第四章 結果與討論 35
4.1 參數設定 35
4.2 厚度比與 對穩定基態解之影響 37
4.3 厚度比與濃度間的雙模態轉換關係 39
4.4 厚度比與溫度間的雙模態轉換關係 42
4.5 厚度比與孔隙率對成長率之影響 44
4.6 厚度比與Beavers-Joseph constant對成長率之影響 46
4.7 厚度比與達西數對成長率之影響 48
第五章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 51
參考文獻 52
1.Klaus D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum, 2011. : p. 30-5.
2.Choi, S., Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 1995. 231: p. 99-106.
3.Hung, Y.-H., T.-P. Teng, and B.-G. Lin, Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Experimental Thermal and Fluid Science, 2013. 44: p. 504-511.
4.Wang, X.-Q. and A.S. Mujumdar, A review on nanofluids-part I: theoretical and numerical investigations. Brazilian Journal of Chemical Engineering, 2008. 25(4): p. 613-630.
5.J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U.S. Choi, and C. J. Choi, “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” Int. J. Heat Mass Transfer, 2008. p. 2651-2656.
6.Vajjha, R.S. and D.K. Das, Specific heat measurement of three nanofluids and development of new correlations. Journal of heat transfer, 2009. 131(7): p. 071601.
7.Namburu, PK Kulkarni, DP, Dandekar, A,Das, DK, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters, 2007. 2(3): p. 67-71.
8.Zhou, S.-Q. and R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 2008. 92(9): p. 093123.
9.Bergman, T., Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. International Journal of heat and mass Transfer, 2009. 52(5): p. 1240-1244.
10.Anoop, K., T. Sundararajan, and S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region. International journal of heat and mass transfer, 2009. 52(9): p. 2189-2195.
11.Abu-Nada, E., Effects of variable viscosity and thermal conductivity of Al 2 O 3–water nanofluid on heat transfer enhancement in natural convection. International Journal of Heat and Fluid Flow, 2009. 30(4): p. 679-690.
12.Eastman, J.A, Choi, SUSLi, Sheng , Yu, W and Thompson, LJ, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 2001. 78(6): p. 718- 720.
13.Das, S.K., N. Putra, and W. Roetzel, Pool boiling characteristics of nano-fluids. International journal of heat and mass transfer, 2003. 46(5): p. 851-862.
14.S.M.S. Murshed, K.C. Leong, C.Yang, Enhanced thermal conductivity of TiO2—water based nanofluids, International Journal of Thermal Sciences, 2005. p. 367–373
15.Pak, B.C. and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 1998. 11(2): p. 151-170.
16.Brinkman, H., The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 1952. 20(4): p. 571-571.
17.Wang, X., X. Xu, and S.U. Choi, Thermal conductivity of nanoparticle-fluid mixture. Journal of thermophysics and heat transfer, 1999. 13(4): p. 474-480.
18.Q. Li, Y. Xuan, F. Yu, Experimental investigation of submerged single jet impingement using Cu–water nanofluid, Appl. Therm. Eng, 2012. p. 426–433
19.Abu-Nada, Eiyad. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int. J. Heat Fluid Flow 29, 2008. p. 242–249
20.學其妙, 流體與多孔介質雙層流域中奈米流體的熱對流穩定性分析, 臺灣大學應用力學研究所學位論文, 2017
21.Maı̈ga, S.E.B., et al., Heat transfer behaviours of nanofluids in a uniformly heated tube. Super lattices and Microstructures, 2004. 35(3): p. 543-557.
22.Xuan, Y. and W. Roetzel, Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 2000. 43(19): p. 3701-3707.
23.Buongiorno, J., Convective transport in nanofluids. Journal of Heat Transfer, 2006. 128(3): p. 240-250.
24.Tzou, D., Thermal instability of nanofluids in natural convection. International Journal of Heat and Mass Transfer, 2008. 51(11): p. 2967-2979.
25.Tzou, D., Instability of nanofluids in natural convection. Journal of Heat Transfer, 2008. 130(7): p. 072401.
26.Kuznetsov, A. and D. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transport in Porous Media, 2010. 81(3): p. 409-422.
27.Tsai, T.-H. and R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks. International Journal of Heat and Fluid Flow, 2007. 28(5): p. 1013-1026.
28.M. B. K. Moorthy and K. Senthilvadivu, Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity, Journal of Applied Mathematics, 2012.
29.D. Nield and Kuznetsov, A., The onset of convection in a horizontal nanofluid layer of finite depth. European Journal of Mechanics-B/Fluids, 2011. p. 217-223.
30.G.S. McNAB & A.MEISEN, Thermophoresis in Liquids. Journal of Colloid and Interface Science, 1973. : p. 339-346.
31.Chen, F. and C. Chen, Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transfer, 1988. 110(2): p. 403-409.
32.R. Chand, G.C. Rana, On the Onset of Thermal Convection in Rotating Nanofluid Layer Saturating a Darcy–Brinkman Porous Medium, Int. J. Heat Mass Transf. 2012 p. 5417–5424.
33.Yadav, D., J. Lee, and H.H. Cho, Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technology, 2015. 286: p. 592-601.
34.Kuznetsov, A., Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. European Journal of Mechanics-B/Fluids, 2011. 30(2): p. 156-165.
35.Z. Alloui, P. Vasseur, and M.Reggio , “Natural convection of nanofluids in a shallow cavity heated from below,” International Journal of Thermal Sciences, 2011 50(3), pp. 385–393
36.Wang, L. and J. Fan, Nanofluids research: key issues. Nanoscale research letters, 2010. 5(8): p. 1241.
37.Chang, M.-H., Stability of convection induced by selective absorption of radiation in a fluid overlying a porous layer. Physics of Fluids, 2004. 16(10): p. 3690-3698.
38.Prasher, R., et al., Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 2006. 89(13): p. 133108.
39.Jang, S.P. and S.U. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied physics letters, 2004. 84(21): p. 4316-4318.
40.D. Nield and Kuznetsov, A., The onset of convection in a horizontal nanofluid layer of finite depth:A revised model. International Journal of Heat and Mass Transfer, 2014. : p. 915-918.
41.D. Nield and Kuznetsov, A., Thermal instability in a porous medium layer saturated by a nanofluid:A revised model. International Journal of Heat and Mass Transfer, 2014. : p. 211-214.
42.D. Nield and Kuznetsov, A., The onset of convection in a horizontal nanofluid layer of finite depth. European Journal of Mechanics - B/Fluids, 2010. : p. 217-223.
43.N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids. Heat and Mass Transfer, 2003.: p. 775-784
44.G.Bardan and A.Mojtabi, On the Horton–Rogers–Lapwood convective instability with vertical vibration: Onset of convection, Physics of Fluids, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top