跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何文劭
研究生(外文):Wen­-Shao He
論文名稱:使用伽馬散度之穩健線性判別分析法
論文名稱(外文):Robust linear discriminant analysis based on γ-­divergence
指導教授:陳定立陳定立引用關係
指導教授(外文):Ting-Li Chen
口試委員:陳素雲杜憶萍王偉仲
口試委員(外文):Su-Yun HuangI-Ping TuWei-Chung Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用數學科學研究所
學門:數學及統計學門
學類:其他數學及統計學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:38
中文關鍵詞:穩健統計學線性判別分析降維γ-散度影響函數
外文關鍵詞:Robust statisticsLinear discriminant analysisDimension reductionγ-divergenceInfluence function
DOI:10.6342/NTU201901737
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
線性判別分析可最大程度地提高組間差異與組內差異的比率,它被廣泛用於監督維度縮減中。在傳統的線性判別分析中,判別空間會被標籤錯誤的數據嚴重影響。為了克服這個問題,我們提出了基於伽馬散度的穩健線性判別分析。本文將介紹伽馬線性判別分析算法,並透過影響函數分析其穩健性。我們也藉由模擬資料與人臉辨識資料來展現新方法的優越性。
Linear discriminant analysis (LDA) which maximizes the ratio of the between-class variance to the within-class variance is widely used in supervised dimension reduction. In the traditional LDA, the discriminant space can be badly affected by the mislabeled data. To overcome this issue, we propose a robust linear discriminant analysis based on the γ-divergence which is a more robust measure than the Kullback-Leibler divergence. In this thesis, we will introduce the γ-LDA algorithm and analyze its robustness by the influence function. Furthermore, we will show the superior performance of γ-LDA on the simulated examples as well as face image data.
Acknowledgements i
Abstract ii
1 Introduction 1
1.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Robust Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 3
2 Robustness of Linear Discriminant Analysis 4
2.1 Robust Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Measurement of Robustness . . . . . . . . . . . . . . . . . . . 5
2.1.2 M-estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Robustness of Linear Discriminant Analysis . . . . . . . . . . . . . . 8
3 The Minimum γ-Divergence Estimation 12
4 γ-LDA Algorithm 16
4.1 Model Specification and Estimation . . . . . . . . . . . . . . . . . . . 17
4.2 Plug-in γ-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Projection Pursuit γ-LDA . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Projection Pursuit . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Simulation and Compression of γ-LDA . . . . . . . . . . . . . . . . . 23
5 Robustness of γ-LDA 29
6 Real Data 32
7 Discussion and Future Work 34
[CR92] CY Chork and Peter J Rousseeuw. Integrating a high-breakdown option into discriminant analysis in exploration geochemistry. Journal of
Geochemical Exploration, 43(3):191–203, 1992.
[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur
Moitra, and Alistair Stewart. Robust estimators in high-dimensions
without the computational intractability. SIAM Journal on Computing,
48(2):742–864, 2019.
[Don82] David L Donoho. Breakdown properties of multivariate location estimators. Technical report, Technical report, Harvard University, Boston.
URL http://www-stat. stanford …, 1982.
[FE08] Hironori Fujisawa and Shinto Eguchi. Robust parameter estimation
with a small bias against heavy contamination. J. Multivar. Anal.,
99(9):2053–2081, October 2008.
[FT74] Jerome H Friedman and John W Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on computers,
100(9):881–890, 1974.
[Ham68] Frank R Hampel. Contribution to the theory of robust estimation. Ph.
D. Thesis, University of California, Berkeley, 1968.
[Ham74] Frank R. Hampel. The influence curve and its role in robust estimation.
Journal of the American Statistical Association, 69(346):383–393, 1974.
HD04] Mia Hubert and Katrien Driessen. Fast and robust discriminant analysis.
Computational Statistics Data Analysis, 45:301–320, 03 2004.
[HF00] Xuming He and Wing Fung. High breakdown estimation for multiple
populations with applications to discriminant analysis. Journal of Multivariate Analysis, 72:151–162, 02 2000.
[HM97] Douglas M. Hawkins and Geoffrey J. McLachlan. High-breakdown linear
discriminant analysis. Journal of the American Statistical Association,
92(437):136–143, 3 1997.
[HR09] Peter J Huber and Elvezio M Ronchetti. Robust statistics; 2nd ed. Wiley
Series in Probability and Statistics. Wiley, Hoboken, NJ, 2009.
[HRRS11] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust
Statistics: The Approach Based on Influence Functions. Wiley Series in
Probability and Statistics. Wiley, 2011.
[Hub64] Peter J. Huber. Robust estimation of a location parameter. Ann. Math.
Statist., 35(1):73–101, 03 1964.
[Hub85] Peter J. Huber. Projection pursuit. Ann. Statist., 13(2):435–475, 06
1985.
[LRV16] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation
of mean and covariance. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 665–674. IEEE, 2016.
[Mar76] Ricardo Antonio Maronna. Robust m-estimators of multivariate location
and scatter. Ann. Statist., 4(1):51–67, 01 1976.
[MB98] A.M. Martinez and R. Benavente. The ar face database. Technical Report
24, Computer Vision Center, 06 1998.
[PB10] Ana M Pires and Jo˜ao A Branco. Projection-pursuit approach to robust linear discriminant analysis. Journal of Multivariate Analysis,
101(10):2464–2485, 2010.
[Rou81] Peter J Rousseeuw. A new infinitesimal approach to robust estimation. Zeitschrift f¨ur Wahrscheinlichkeitstheorie und verwandte Gebiete,
56(1):127–132, 1981.
[Rou85] Peter Rousseeuw. Multivariate estimation with high breakdown point.
Mathematical Statistics and Applications Vol. B, pages 283–297, 01 1985.
[Sta81] Fachgruppe Fuer Statistik. Breakdown of covariance estimators. Research Report, 1981.
[Ste79] G.W. Stewart. Pertubation bounds for the definite generalized eigenvalue
problem. Linear algebra and its applications, 23:69–85, 1979.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top