跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李東瑩
研究生(外文):Dong-Ying Li
論文名稱:利用煉鋼廠廢棄耐火磚回收廢水中的磷酸與氨氮之研究
論文名稱(外文):Recovery of Phosphate and Ammonia from Wastewater Using Spent Refractory Brick from Steel Industry
指導教授:林逸彬
指導教授(外文):Yi-Pin Lin
口試委員:潘述元黃鼎荃
口試委員(外文):Shu-Yuan PanDing-Quan Ng
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:52
中文關鍵詞:鳥糞石磷酸回收氨氮回收耐火磚亞硫酸鈣
外文關鍵詞:struvitephosphate recoveryammonia nitrogen recoveryrefractory brickcalcium sulfite
DOI:10.6342/NTU202002203
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
煉鋼廠的廢棄耐火磚中鎂含量很高,而鎂是以鳥糞石(MgNH4PO4.6H2O)沉澱回收磷酸(PO43--P)和氨氮(NH3-N)不可或缺的一部分。在酸性條件下,鎂離子(Mg2+)、鈣離子(Ca2+)和少數其他金屬離子如:鐵離子(Fe3+)、亞鐵離子(Fe2+)、鋁離子(Al3+)等會從廢棄耐火磚礫石中溶出。鎂離子、氨氮、磷酸的摩爾比和pH值是促進鳥糞石沉澱的重要參數,而鈣離子則會抑制鳥糞石沉澱。本研究中以下順序形成三種沉澱物以去除回收模擬廢水中的磷酸和氨氮:1.在廢棄耐火磚礫石溶出液中加入亞硫酸根(SO32-),在[SO32-]0/[Ca2+]0 = 1.2和pH 8.9下,和亞硫酸根和鈣離子產生亞硫酸鈣(CaSO3)沉澱,以去除溶出液中的鈣,同時維持鎂離子濃度。2.混和去除鈣後之含鎂溶出液和模擬廢水,在[Mg2+]0 : [NH3-N]0 : [PO43-P]0 = 2 : 1 : 2和pH 9.5下,利用鳥糞石沉澱回收模擬廢水中的氨氮和部分磷酸。3.以未除鈣之溶出液,在[Ca2+]0/[PO43--P]0 = 1.67和pH 9.5 下藉由磷酸鈣(Ca3(PO4)2)沉澱去除水中殘留磷酸。利用表面形態和礦物分析儀器包括XRD和SEM-EDS顯示, XRD圖譜中亞硫酸鈣與鳥糞石均與標準圖譜吻合。在SEM照片中,亞硫酸鈣和鳥糞石的形態一致,而在EDS中,亞硫酸鈣和鳥糞石的元素組成比與理想的亞硫酸鈣和鳥糞石的組成比相同。本研究建立了一個從廢水中回收磷酸和氨氮的流程,最終廢水中的磷酸和氨氮能達放流水標準。
Spent refractory brick from steel industry contains high content of magnesium (Mg), which is an indispensable source of Mg for phosphate (PO43--P) and ammonia nitrogen (NH3-N) recovery from wastewater via struvite (MgNH4PO4.6H2O) precipitation. In acidic condition, Mg2+, Ca2+ and other metal ions (Fe3+, Fe2+ and Al3+) were leached from spent refractory brick gravel. The molar ratio of [Mg2+]0 : [NH3-N]0 : [PO43--P]0 and pH value are important parameters regulating the precipitation of struvite, while the presence of Ca2+ is known to inhibit struvite precipitation.. Three different precipitates were formed in the proposed process to recover PO43--P and NH3-N in synthetic wastewater: 1. The addition of SO32- in the spent refractory brick leachate with a molar ratio of [SO32-]0/[Ca2+]0 = 1.2 at pH 8.9 to sequester Ca2+ via calcium sulfite (CaSO3) precipitation. 2. The addition of Mg2+-rich leachate after Ca2+ removal in synthetic wastewater with a molar ratio of [Mg2+]0 : [NH3-N]0 : [PO43-P]0 = 2 : 1 : 2 at pH 9.5 to initiate struvite precipitation to recover NH3-N and PO43--P. 3. The addition of spent refractory brick leachate before Ca2+ removal to synthetic wastewater after step 2 with a molar ratio of [Ca2+]0/[PO43--P]0 = 1.67 at pH 9.5 to initiate calcium phosphate (Ca3(PO4)2) precipitation to remove residual PO43--P. The surface morphology and mineralogy of precipitates were characterized using XRD and SEM-EDS. The XRD patterns of precipitates matched the standard ones of both CaSO3 and struvite. In SEM images showed characteristic morphologies of both CaSO3 and struvite and the EDS showed identical elemental composition proportion for both CaSO3 and struvite. Overall, a process was developed for the recovery of PO43--P and NH3-N using the Mg2+-rich leachate from spent refractory brick and the final effluent could meet the discharge standards.
Table of Content
摘要 I
Abstract II
Table of Content IV
List of Figures VI
List of Tables IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 2
Chapter 2 Literature Review 3
2.1 Issues of PO43--P and NH3-N in wastewater 3
2.2 Removal of PO43--P and NH3-N in wastewater 3
2.3 Recovery of PO43--P and NH3-N via struvite precipitation 4
2.4 Refractory brick in steel industry 7
Chapter 3 Materials and Methods 8
3.1 Chemicals and synthetic wastewater preparation 8
3.2 Spent refractory brick gravel and Mg2+-rich leachate preparation 8
3.3 Experimental apparatus and methods 14
3.4 Analytical methods 16
Chapter 4 Results and Discussion 17
4.1. Characteristics of refractory brick gravel 17
4.2. Initial evaluation of using Mg2+-rich leachate to recover NH3-N and PO43--P via struvite precipitation 20
4.3. Removal of Ca2+ from leachate of refractory brick gravel leachate 22
4.4. Influences of pH and solution composition for NH3-N and PO43--P recovery via struvite precipitation 29
Chapter 5 Conclusions and Recommendations 45
5.1 Conclusions 45
5.2 Recommendations 46
References 47
Aguado, D., Barat, R., Bouzas, A., Seco, A., and Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Sci Total Environ, 672, 88-96.
Diaz, R. J. and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926-929.
Doyle, J. D. and Parsons, S. A. (2002). Struvite formation, control and recovery. Water Res, 36(16), 3925-3940.
Glibert, P. M. (2017). Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull, 124(2), 591-606.
Glibert, P. M., Seitzinger, S., Heil, C. A., Burkholder, J. M., Parrow, M. W., Codispoti, L. A., and Kelly, V. (2005). The Role of Eutrophication in the Global Proliferation of Harmful Algal Blooms. Oceanography, 18(2), 198-209.
Gokce, A. S., Gurcan, C., Ozgen, S., and Aydin, S. (2008). The effect of antioxidants on the oxidation behaviour of magnesia–carbon refractory bricks. Ceramics International, 34(2), 323-330.
Guo, J., Zhang, C., Zheng, G., Xue, J., and Zhang, L. (2018). The establishment of season-specific eutrophication assessment standards for a water-supply reservoir located in Northeast China based on chlorophyll-a levels. Ecological Indicators, 85, 11-20.
Hallas, J., Mackowiak, C., Wilkie, A., and Harris, W. (2019). Struvite Phosphorus Recovery from Aerobically Digested Municipal Wastewater. Sustainability, 11(2)
Han, Y., Yang, K., Yang, T., Zhang, M., and Li, L. (2019). Bioaerosols emission and exposure risk of a wastewater treatment plant with A(2)O treatment process. Ecotoxicol Environ Saf, 169, 161-168.
Isaacs, S. H. and Henze, M. (1995). Controlled Carbon Source Addition To an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal. Water Res, 29, 77-89.
Kagami, M., Hirose, Y., and Ogura, H. (2012). Phosphorus and nitrogen limitation of phytoplankton growth in eutrophic Lake Inba, Japan. Limnology, 14(1), 51-58.
Korchef, A., Saidou, H., and Ben Amor, M. (2011). Phosphate recovery through struvite precipitation by CO2 removal: effect of magnesium, phosphate and ammonium concentrations. J Hazard Mater, 186(1), 602-613.
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., and Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283(3-4), 514-522.
Li, B., Boiarkina, I., Yu, W., Huang, H. M., Munir, T., Wang, G. Q., and Young, B. R. (2019). Phosphorous recovery through struvite crystallization: Challenges for future design. Sci Total Environ, 648, 1244-1256.
Li, C. C. (2006). Eutrophication of Two Lakes in Kinmen Island (Taiwan). Chemistry and Ecology, 12(1-2), 57-66.
Liu, B., Sun, J.-l., Tang, G.-s., Liu, K.-q., Li, L., and Liu, Y.-f. (2010). Effects of Nanometer Carbon Black on Performance of Low-Carbon MgO-C Composites. Journal of Iron and Steel Research International, 17(10), 75-78.
Othman, A. G. M. and Nour, W. M. N. (2005). Recycling of spent magnesite and ZAS bricks for the production of new basic refractories. Ceramics International, 31(8), 1053-1059.
Pai, T. Y., Ouyang, C. F., Su, J. L., and Leu, H. G. (2001). Modelling the stable effluent qualities of the A2O process with activated sludge model 2d under different return supernatant. Journal of the Chinese Institute of Engineers, 24(1), 75-84.
Ryther, J. H. and Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171(3975), 1008-1013.
Sadrnezhaad, S. K., Mahshid, S., Hashemi, B., and Nemati, Z. A. (2006). Oxidation Mechanism of C in MgO-C Refractory Bricks. Journal of the American Ceramic Society, 89(4), 1308-1316.
Schauser, I., Chorus, I., and Heinzmann, B. (2006). Strategy and current status of combating eutrophication in two Berlin lakes for safeguarding drinking water resources. Water Science and Technology, 54(11-12), 93-100.
Schernewski, G. (2003). Nutrient Budgets, Dynamics and Storm Effects in a Eutrophic, Stratified Baltic Lake. Acta hydrochimica et hydrobiologica, 31(2), 152-161.
Schropfer, L. (1973). Strukturelle Unter-suchungen an CaSO3.1/2H2O. Zeit Anorg. Allg. Chem., 401, 1-14.
Schulzerettmer, R. (1991). The Simultaneous Chemical Precipitation of Ammonium and Phosphate in the Form of Magnesium-Ammonium-Phosphate. Water Science and Technology, 23(4-6), 659-667.
Seip, K. L. (1994). Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquatic Sciences, 56, 16-28.
Stratful, I., Scrimshaw, M. D., and Lester, J. N. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res, 35(17), 4191-4199.
Wang, F., Fu, R., Lv, H., Zhu, G., Lu, B., Zhou, Z., Wu, X., and Chen, H. (2019). Phosphate Recovery from Swine Wastewater by a Struvite Precipitation Electrolyzer. Sci Rep, 9(1), 8893.
Wang, L., Liu, L., and Zheng, B. (2013). Eutrophication development and its key regulating factors in a water-supply reservoir in North China. Journal of Environmental Sciences, 25(5), 962-970.
Wilsenach, J. A., Schuurbiers, C. A., and van Loosdrecht, M. C. (2007). Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res, 41(2), 458-466.
Yoo, Y., Kang, D., Kim, I., and Park, J. (2018). Characteristics of Metal Cation Carbonation and Carbon Dioxide Utilization Using Seawater-Based Industrial Wastewater. ChemistrySelect, 3(32), 9284-9292.
Zeng, F., Zhao, Q., Jin, W., Liu, Y., Wang, K., and Lee, D.-J. (2018). Struvite precipitation from anaerobic sludge supernatant and mixed fresh/stale human urine. Chemical Engineering Journal, 344, 254-261.
Zhang, T., Ding, L., Ren, H., and Xiong, X. (2009). Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Res, 43(20), 5209-5215.
Zhang, T. X., Bowers, K., Harrison, J., and Chen, S. L. (2008). Impact of calcium on struvite precipitation from anaerobically digested dairy wastewater. Abstracts of Papers of the American Chemical Society, 235
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top