|
Babich, H., & Stotzky, G. (1980). Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit Rev Microbiol, 8(2), 99-145. Baron, D., et al. (2009). Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. Journal of Biological Chemistry, 284(42), 28865-28873. Bhatia, M., et al. (2014). Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus, 3(1), 497. Bhattacharya, D., et al. (2003). Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol, 69(3), 1435-1441. Boon, N., et al. (2008). Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Applied microbiology and biotechnology, 80(6), 985-993. Bopp, L. H., & Ehrlich, H. L. (1988). Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Archives of Microbiology, 150(5), 426-431. Breuer, M., et al. (2015). Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. Journal of The Royal Society Interface, 12(102), 20141117. Cheung, K., & Gu, J.-D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation, 59(1), 8-15. Choban, E. (2004). Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 128(1), 54-60. Cusick, R. D., et al. (2011). Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol, 89(6), 2053-2063. Davila, D., et al. (2011). Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron, 26(5), 2426-2430. Dhal, B., et al. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater, 250-251, 272-291. Dixit, V., et al. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 25(5), 687-693. Effler, S., et al. (1980). Whole lake responses to low level copper sulfate treatment. Water Research, 14(10), 1489-1499. Elder, J. F., & Horne, A. J. (1978). Copper cycles and CuSO 4 algicidal capacity in two California lakes. Environmental management, 2(1), 17-30. ElMekawy, A., et al. (2013). Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology, 142, 672-682. Fitzgerald, L. A., et al. (2012). Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride. Biosensors and Bioelectronics, 31(1), 492-498. Gaetke, L. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2), 147-163. Gorby, Y. A., et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103(30), 11358-11363. Gourley, P. L., et al. (1997). Prominent microscopic effects in microfabricated fluidic analysis systems. Paper presented at the Micro- and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications. Gutierrez, M., et al. (2002). Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research, 36(4), 919-924. Han, B.-C., & Hung, T.-C. (1990). Green oysters caused by copper pollution on the Taiwan coast. Environmental pollution, 65(4), 347-362. Hou, H., et al. (2009). Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One, 4(8), e6570. Inoue, S., et al. (2012). Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sensors and Actuators A: Physical, 177, 30-36. Ismagilov, R. F., et al. (2000). Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters, 76(17), 2376-2378. Jaishankar, M., et al. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol, 7(2), 60-72. Kamholz, A. E., et al. (1999). Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical chemistry, 71(23), 5340-5347. Kim, H. J., et al. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial technology, 30(2), 145-152. Kim, M., et al. (2007). A novel biomonitoring system using microbial fuel cells. Journal of environmental monitoring, 9(12), 1323-1328. Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental pollution, 107(3), 263-283. Kwabi, D. G., et al. (2018). Alkaline quinone flow battery with long lifetime at pH 12. Joule, 2(9), 1894-1906. Li, Z., et al. (2011). Microbial electricity generation via microfluidic flow control. Biotechnol Bioeng, 108(9), 2061-2069. Liu, H., et al. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental science & technology, 38(7), 2281-2285. Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375-381. Logan, B. E., et al. (2006). Microbial fuel cells: methodology and technology. Environmental science & technology, 40(17), 5181-5192. Lower, S. K., et al. (2001). Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science, 292(5520), 1360-1363. Meyer, T. E., et al. (2004). Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. Omics: a journal of integrative biology, 8(1), 57-77. Mohan, S. V., et al. (2014). Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779-797. Monteiro, Á. A., et al. (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal, 6(1), 45-49. Myers, C. R., & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240(4857), 1319-1321. Ochoa-Herrera, V., et al. (2011). Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Science of the total environment, 412, 380-385. Olaniran, A. O., et al. (2011). Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J Environ Monit, 13(10), 2914-2920. Pant, D., et al. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol, 101(6), 1533-1543. Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol., 66(4), 1292-1297. Pham, T., et al. (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences, 6(3), 285-292. Piccolino, M. (1998). Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain research bulletin, 46(5), 381-407. Pirbadian, S., et al. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A, 111(35), 12883-12888. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series b, containing papers of a biological character, 84(571), 260-276. Prakash, O., et al. (2007). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. International journal of systematic and evolutionary microbiology, 57(3), 527-531. Prasad, D., et al. (2007). Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens Bioelectron, 22(11), 2604-2610. Qiao, Y., et al. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79-84. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol, 23(6), 291-298. Rahimnejad, M., et al. (2011). Methylene blue as electron promoters in microbial fuel cell. International Journal of Hydrogen Energy, 36(20), 13335-13341. Reguera, G., et al. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098-1101. Rodriguez-Mozaz, S., et al. (2005). Biosensors for environmental monitoring A global perspective. Talanta, 65(2), 291-297. Romanenko, V., & Korenkov, V. (1977). Pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Microbiology, 46(3), 329-332. Satoh, I. (1991). An apoenzyme thermistor microanalysis for zinc (II) ions with use of an immobilized alkaline phosphatase reactor in a flow system. Biosensors and Bioelectronics, 6(4), 375-379. Siu, C. P. B., & Mu, C. (2008). A Microfabricated PDMS Microbial Fuel Cell. Journal of Microelectromechanical Systems, 17(6), 1329-1341. Souza, H. P., et al. (2001). Vascular NAD (P) H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. American Journal of Physiology-Heart and Circulatory Physiology, 280(2), H658-H667. Tender, L. M., et al. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources, 179(2), 571-575. Turpeinen, R., et al. (2004). Microbial community structure and activity in arsenic-, chromium-and copper-contaminated soils. FEMS Microbiology Ecology, 47(1), 39-50. Uauy, R., et al. (1998). Essentiality of copper in humans. The American journal of clinical nutrition, 67(5), 952S-959S. Venkata Mohan, S., et al. (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779-797. Verma, N., & Singh, M. (2005). Biosensors for heavy metals. Biometals, 18(2), 121-129. Von Canstein, H., et al. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol., 74(3), 615-623. Wang, H. Y., & Su, J. Y. (2013). Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresour Technol, 145, 271-274. Wielinga, B., et al. (2001). Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental science & technology, 35(3), 522-527. WINGE, D. R., & MEHRA, R. K. (1990). Host defenses against copper toxicity. In International review of experimental pathology (Vol. 31, pp. 47-83): Elsevier. Wu, D., et al. (2013). Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresource Technology, 135, 630-634. Yang, Y., et al. (2016). Microfluidic microbial fuel cells: from membrane to membrane free. Journal of Power Sources, 324, 113-125. Yong, X.-Y., et al. (2017). An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Bioresource Technology, 241, 1191-1196. Zaky, A. S., et al. (2016). Use of marine yeast for the efficient production of bioethanol from seawater-based media. New Biotechnology(33), S52-S53.
|