跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 14:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王雨潔
研究生(外文):Yu-Jie Wang
論文名稱:應用電活性微生物於微流道微生物燃料電池監測水中重金屬毒性之探討
論文名稱(外文):Constructing a laminar-flow based microfluidic microbial fuel cell to monitor environmental toxicity of heavy metal by electroactive microorganisms
指導教授:于昌平
指導教授(外文):Chang-Ping Yu
口試委員:林居慶郭獻文
口試委員(外文):Chu-Ching LinHsien-Wen Kuo
口試日期:2020-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:85
中文關鍵詞:生物傳感器微生物燃料電池生物陽極微流道微生物燃料電池快速篩選重金屬毒性測試
外文關鍵詞:biosensormicrobial fuel cellbioanodemicrofluidic microbial fuel cellrapid screeningheavy metal toxicity testing
DOI:10.6342/NTU202001321
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物燃料電池為一種再生能源,電池中具有電化學活性之微生物,能氧化廢水中的營養物質,達到處理污染物同時又產生電能之效果,因而此技術逐漸受到關注。除了作為再生能源之角色,縮小其規格製成微流道微生物燃料電池具有應用於生物傳感器的潛力,能透過微生物快速反應及產電之優勢,進行重金屬污染物之檢測。本研究以碳紙作為電活性微生物附著之載體(即本系統之電極),於陽極電極上培養指標性產電菌Shewanella oneidensis,Pseudomonas delhiensis及Pseudomonas citronellolis三株菌株,並以醋酸鈉合成廢水作為陽極液,於其中添加相異濃度之六價鉻及二價銅,注入微流道中觀測三株產電菌產生的電壓所受到的抑制程度,進而建立重金屬濃度與減少電壓之關聯,成功於不同濃度區間建構出能夠快篩重金屬污染物存在之感測系統。透過與其他常見之微生物毒性檢測方法,包括吸光值OD600、結晶紫染色、Microtox○R等三種方法詳細比較後,確立本研究方法之可行性。
結果顯示,六價鉻於0 mM-0.125 mM區間、二價銅於0.125 mM-1 mM區間,菌株能夠有效的反應其毒性,建立良好的重金屬濃度-抑制程度關係,R2可達0.99,三株菌株於六價鉻都能作為生物傳感器之反應媒介,而二價銅部分又以Pseudomoans delhiensis 有較佳之反應且有較廣之濃度區間。本研究所建立之微流道方法與吸光值OD600之重金屬毒性反應趨勢相似,皆能以類似微生物生長公式之自然對數型式表示,確立微流道作為微生物傳感器快篩水體重金屬污染物之潛力。
The microbial fuel cell (MFC) as one of green energy harvesting techniques can reach the goal of simultaneous pollutants removal and power generation through electroactive bacteria (EAB). In addition, with the advantages of shorter reaction time, microfluidic microbial fuel cell (mMFC) has been developed by combining small-scale MFC and laminar flow, and it has potential to be applied in biosensors to detect pollutants.
In this study, laminar-flow based mMFC is constructed to monitor environmental toxicity of heavy metal by electroactive microorganisms. Carbon paper is used as the anode electrode, with EAB such as Shewanella oneidensis, Pseudomonas delhiensis and Pseudomonas citronellolis cultivated on it. Synthetic wastewater with sodium acetate was the anolyte and different concentrations of Chromium and Copper were added for observing the relationship between extent of inhibition and heavy metal concentrations by measuring open circuit and closed circuit voltages of mMFC. Consequently, we successfully constructed a fast-screening system for heavy metals in different concentration ranges. Common heavy-metal toxicity testing methods, including measurement of bacterial growth using absorbance at 600 nm wave length, crystal violet staining, and Microtox, were measured in this work for comparison and verifying the feasibility of our newly constructed system.
Results showed that around 0 mM-0.125 mM of Chromium and 0.125 mM-1.0 mM of Copper, accurate relationship was observed between the concentrations and the extent of inhibition of EAB, achieving R2 = 0.99. For Copper, Pseudomonas delhiensis had better performance and wider concentration ranges. In addition, after compared with other three methods, laminar-flow based mMFC constructed in this study was observed to perform similar trend with bacterial growth measurement at OD600. Both of the methods can be formulated as natural logarithm similar to bacterial growth curves. In conclusion, we confirmed the potential of laminar-flow based mMFC as biosensor for fast-screening of toxicity substance in wastewater.
目錄

論文口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract v
第 一 章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構圖 4
第 二 章 文獻回顧 5
2.1 生物感測 5
2.1.1 生物傳感器及其演進 5
2.1.2 生物傳感器之應用 6
2.2 生物電化學之理論與發展 7
2.2.1 生物電化學系統之沿革 9
2.2.2 微生物燃料電池之產電原理 9
2.2.2 電子傳遞機制 13
2.3微型微生物燃料電池 16
2.3.1微型微生物燃料電池之發展及應用 16
2.3.2微型微生物燃料電池之影響因子 17
2.4 重金屬對微生物之影響 20
2.4.1 鉻的來源及對微生物之影響 20
2.4.2 銅的來源及對微生物之影響 22
第 三 章 材料與方法 25
3.1 實驗藥品與設備 25
3.1.1 實驗藥品 25
3.1.2 實驗設備與儀器 26
3.2 微流道微生物燃料電池系統 27
3.2.1 菌種來源與馴養 28
3.2.1.1菌液活化 29
3.2.1.2 菌種介紹 30
3.2.2 微流道微生物燃料電池組態 33
3.2.3 微流道微生物燃料電池運行 33
3.2.4 溶液層流條件與擴散層 35
3.3 微流道微生物燃料電池之重金屬毒性試驗 38
3.3.1 陽極菌微流道對重金屬毒性測試之運行 38
3.3.2 陰極菌微流道重金屬毒性測試 41
3.4 電極特性分析 44
3.4.1 循環伏安法 44
3.4.2 螢光顯微鏡 47
3.5吸光值重金屬毒性試驗 48
3.5.1吸光值測量細胞濃度 48
3.5.2 懸浮微生物之重金屬毒性測試 49
3.5.3 微生物膜重金屬毒性測試 49
3.6細菌冷光法毒性試驗 51
第 四 章 結果與討論 53
4.1重金屬毒性試驗之表現 53
4.1.1微流道之重金屬毒性試驗 53
4.1.2 吸光值重金屬毒性試驗 60
4.1.2.1 懸浮微生物之毒性試驗 60
4.1.2.2 結晶紫染色之微生物膜重金屬毒性試驗 63
4.1.3 細菌冷光法之重金屬毒性試驗 64
4.2 重金屬毒性試驗方法之比較 66
4.3 電極特性分析 74
4.3.1 循環伏安法 74
4.3.2 螢光顯微鏡 75
第 五 章 結論與建議 77
5.1 結論 77
5.2 建議 78
第 六 章 參考文獻 81
Babich, H., & Stotzky, G. (1980). Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit Rev Microbiol, 8(2), 99-145.
Baron, D., et al. (2009). Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. Journal of Biological Chemistry, 284(42), 28865-28873.
Bhatia, M., et al. (2014). Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus, 3(1), 497.
Bhattacharya, D., et al. (2003). Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol, 69(3), 1435-1441.
Boon, N., et al. (2008). Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Applied microbiology and biotechnology, 80(6), 985-993.
Bopp, L. H., & Ehrlich, H. L. (1988). Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Archives of Microbiology, 150(5), 426-431.
Breuer, M., et al. (2015). Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. Journal of The Royal Society Interface, 12(102), 20141117.
Cheung, K., & Gu, J.-D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation, 59(1), 8-15.
Choban, E. (2004). Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 128(1), 54-60.
Cusick, R. D., et al. (2011). Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol, 89(6), 2053-2063.
Davila, D., et al. (2011). Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron, 26(5), 2426-2430.
Dhal, B., et al. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater, 250-251, 272-291.
Dixit, V., et al. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 25(5), 687-693.
Effler, S., et al. (1980). Whole lake responses to low level copper sulfate treatment. Water Research, 14(10), 1489-1499.
Elder, J. F., & Horne, A. J. (1978). Copper cycles and CuSO 4 algicidal capacity in two California lakes. Environmental management, 2(1), 17-30.
ElMekawy, A., et al. (2013). Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology, 142, 672-682.
Fitzgerald, L. A., et al. (2012). Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride. Biosensors and Bioelectronics, 31(1), 492-498.
Gaetke, L. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2), 147-163.
Gorby, Y. A., et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103(30), 11358-11363.
Gourley, P. L., et al. (1997). Prominent microscopic effects in microfabricated fluidic analysis systems. Paper presented at the Micro- and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications.
Gutierrez, M., et al. (2002). Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research, 36(4), 919-924.
Han, B.-C., & Hung, T.-C. (1990). Green oysters caused by copper pollution on the Taiwan coast. Environmental pollution, 65(4), 347-362.
Hou, H., et al. (2009). Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One, 4(8), e6570.
Inoue, S., et al. (2012). Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sensors and Actuators A: Physical, 177, 30-36.
Ismagilov, R. F., et al. (2000). Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters, 76(17), 2376-2378.
Jaishankar, M., et al. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol, 7(2), 60-72.
Kamholz, A. E., et al. (1999). Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical chemistry, 71(23), 5340-5347.
Kim, H. J., et al. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial technology, 30(2), 145-152.
Kim, M., et al. (2007). A novel biomonitoring system using microbial fuel cells. Journal of environmental monitoring, 9(12), 1323-1328.
Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental pollution, 107(3), 263-283.
Kwabi, D. G., et al. (2018). Alkaline quinone flow battery with long lifetime at pH 12. Joule, 2(9), 1894-1906.
Li, Z., et al. (2011). Microbial electricity generation via microfluidic flow control. Biotechnol Bioeng, 108(9), 2061-2069.
Liu, H., et al. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental science & technology, 38(7), 2281-2285.
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375-381.
Logan, B. E., et al. (2006). Microbial fuel cells: methodology and technology. Environmental science & technology, 40(17), 5181-5192.
Lower, S. K., et al. (2001). Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science, 292(5520), 1360-1363.
Meyer, T. E., et al. (2004). Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. Omics: a journal of integrative biology, 8(1), 57-77.
Mohan, S. V., et al. (2014). Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779-797.
Monteiro, Á. A., et al. (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal, 6(1), 45-49.
Myers, C. R., & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240(4857), 1319-1321.
Ochoa-Herrera, V., et al. (2011). Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Science of the total environment, 412, 380-385.
Olaniran, A. O., et al. (2011). Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J Environ Monit, 13(10), 2914-2920.
Pant, D., et al. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol, 101(6), 1533-1543.
Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol., 66(4), 1292-1297.
Pham, T., et al. (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences, 6(3), 285-292.
Piccolino, M. (1998). Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain research bulletin, 46(5), 381-407.
Pirbadian, S., et al. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A, 111(35), 12883-12888.
Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series b, containing papers of a biological character, 84(571), 260-276.
Prakash, O., et al. (2007). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. International journal of systematic and evolutionary microbiology, 57(3), 527-531.
Prasad, D., et al. (2007). Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens Bioelectron, 22(11), 2604-2610.
Qiao, Y., et al. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79-84.
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol, 23(6), 291-298.
Rahimnejad, M., et al. (2011). Methylene blue as electron promoters in microbial fuel cell. International Journal of Hydrogen Energy, 36(20), 13335-13341.
Reguera, G., et al. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098-1101.
Rodriguez-Mozaz, S., et al. (2005). Biosensors for environmental monitoring A global perspective. Talanta, 65(2), 291-297.
Romanenko, V., & Korenkov, V. (1977). Pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Microbiology, 46(3), 329-332.
Satoh, I. (1991). An apoenzyme thermistor microanalysis for zinc (II) ions with use of an immobilized alkaline phosphatase reactor in a flow system. Biosensors and Bioelectronics, 6(4), 375-379.
Siu, C. P. B., & Mu, C. (2008). A Microfabricated PDMS Microbial Fuel Cell. Journal of Microelectromechanical Systems, 17(6), 1329-1341.
Souza, H. P., et al. (2001). Vascular NAD (P) H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. American Journal of Physiology-Heart and Circulatory Physiology, 280(2), H658-H667.
Tender, L. M., et al. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources, 179(2), 571-575.
Turpeinen, R., et al. (2004). Microbial community structure and activity in arsenic-, chromium-and copper-contaminated soils. FEMS Microbiology Ecology, 47(1), 39-50.
Uauy, R., et al. (1998). Essentiality of copper in humans. The American journal of clinical nutrition, 67(5), 952S-959S.
Venkata Mohan, S., et al. (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779-797.
Verma, N., & Singh, M. (2005). Biosensors for heavy metals. Biometals, 18(2), 121-129.
Von Canstein, H., et al. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol., 74(3), 615-623.
Wang, H. Y., & Su, J. Y. (2013). Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresour Technol, 145, 271-274.
Wielinga, B., et al. (2001). Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental science & technology, 35(3), 522-527.
WINGE, D. R., & MEHRA, R. K. (1990). Host defenses against copper toxicity. In International review of experimental pathology (Vol. 31, pp. 47-83): Elsevier.
Wu, D., et al. (2013). Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresource Technology, 135, 630-634.
Yang, Y., et al. (2016). Microfluidic microbial fuel cells: from membrane to membrane free. Journal of Power Sources, 324, 113-125.
Yong, X.-Y., et al. (2017). An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Bioresource Technology, 241, 1191-1196.
Zaky, A. S., et al. (2016). Use of marine yeast for the efficient production of bioethanol from seawater-based media. New Biotechnology(33), S52-S53.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊