|
Akiyama, H., Yagi, K., & Yan, X. (2005). Direct N2O emissions from rice fields: summary of available data. Glob. Bio. Geo. Chem., Cycles 19 GB 1005. Allen, R. M., & Bennetto, H. P. (1993). Microbial Fuel Cells: Electricity Production from Carbohydrates. Applied Biochemistry and Biotechnology, 39, 27-40. Arends, J. B., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., Rabaey, K., Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol, 98(7), 3205-17. Audet, J., Hoffmann, C. C., Andersen, P. M., Baattrup-Pedersen, A., Johansen, J. R., Larsen, S. E., Kjaergaard, C., Elsgaard, L. (2014). Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments: Emission, uptake and controlling factors. Soil Biology & Biochemistry, 68, 291-299. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol, 57, 233-66. Bergman, I., Klarqvist, M., & Nilsson, M. (2000). Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. FEMS Microbiology Ecology. 33, 181-189. Braker, G., & Tiedje, J. M. (2003). Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and environmental microbiology, 69(6), 3476-3483. Camacho, J. V., Romero, L. R., Marchante, C. M. F., Moralesa, F. J. F., & Rodrigo, M. A. R. (2017). The salinity effects on the performance of a constructed wetland-microbial fuel cell. Ecological Engineering, 107, 1–7. Chen, Z., Lin, S., Yao, Z., Zheng, X., Gschwendtner, S., Schloterd, M., Liu, M., Zhangb, Y., Butterbach-Bahl, K., Dannenmann, M. (2018). Enhanced nitrogen cycling and N2O loss in water-saving ground cover rice production systems (GCRPS). Soil Biology and Biochemistry, 121, 77-86. Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., & Thurston, C. F. (1984). Electron‐transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism-mediator-substrate combinations. Journal of chemical technology and biotechnology. Biotechnology, 34(1), 13-27. De Schamphelaire, L., Van den Bossche, L., Dang, H. S., Hofte, M., Boon, N., Rabaey, K., & Verstraete, W. (2008). Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol, 42(8), 3053–3058. Fang, Z., Song, H., Cang, N., & Li, X. (2015). Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens. Bioelectron, 68, 135–141. Fitzpatrick, R. W., Mosley, L. M., & Cook, F. J. (2017). Understanding and managing irrigated acid sulfate and salt-affected soils: A handbook for the Lower Murray Reclaimed Irrigation Area. DOI: 10.20851/murray-soils Freguia, S., Rabaey, K., Yuan, Z. G., & Keller, J. (2008). Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol, 42(21), 7937-7943. Habermann, W., & Pommer, E. H. (1991). Biological fuel cells with sulphide storage capacity. Applied microbiology and biotechnology, 35(1), 128-133. Hallin, S., & Lindgren, P. E. (1999). PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied and environmental microbiology, 65(4), 1652–1657. Helder, M., Strik, D. P., Hamelers, H. V., Kuhn, A. J., Blok, C., & Buisman, C. J. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource technology, 101(10), 3541–3547. Helder, M., Chen, W.S., Van der Harst, E.J.M., Strik, D.P.B.T.B., Hamelers, H.V.M., Buisman, C.J.N., & Potting, J. (2013). Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell, Biofuels Bioproducts and Biorefining, 7(1), 52-64. Henry, S., Bru, D., Stres, B., Hallet, S., & Philippot, L. (2006). Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and environmental microbiology, 72(8), 5181–5189. Holzman D. C. (2005). Microbe power. Environ Health Persp ,113, A754–A757. IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK and USA. Ishii, S., Hotta, Y., & Watanabe, K. (2008). Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem, 72(2), 286-294. Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol, 79, 43–49. Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., ... & Tatsumi, H. (1999). Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques, 13(7), 475-478. Kim, S. O., & Kim, K. W. (2001). Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis. Journal of hazardous materials, 85(3), 195–211. Kotloski, N. J., & Gralnick, J. A. (2013). Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio, 4(1), e00553-12. Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol, 296(1-4), 1-22. Lin, B., & Lu, Y. (2015). Bacterial and archaeal guilds associated with electrogenesis and methanogenesis in paddy field soil. Geoderma, 259, 362-369. Liu, S., Feng, X., & Li, X. (2017). Bioelectrochemical approach for control of methane emission from wetlands. Bioresource Technology, 241, 812–820. Liu, Y., & Whitman, W. B. (2008). Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann N Y Acad Sci., 1125, 171‐189. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181-5192. Logan, B. E., Zikmund, E., Yang, W., Rossi, R., Kim, K. Y., Saikaly, P. E., & Zhang, F. (2018). Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells. Environmental Science & Technology, 52(15), 8977–8985. Lu, Z., Deng, Y., Van Nostrand, J. D., He, Z., Voordeckers, J., Zhou, A., Lee, Y. J., Mason, O. U., Dubinsky, E. A., Chavarria, K. L., Tom, L. M., Fortney, J. L., Lamendella, R., Jansson, J. K., D'haeseleer, P., Hazen, T. C., Zhou, J. (2012). Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. The ISME journal, 6(2), 451–460. Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E., Leang, C., Kim, B. C., ... & Rotello, V. M. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature nanotechnology, 6(9), 573-579. Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., & Minami, K. (1996). Nitrous oxide emissions from agricultural fields: assessment measurement and mitigation. Plant Soil, 181, 95–108. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695–700. Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants. Journal of Water Process Engineering, 32, 100930. Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., Lehl, H. K., Thung, W. E., Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration inup-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour. Technol, 224, 265–275. Paustian, K., Brenner, J., Easter, M., Killian, K., Ogle, S., Olson, C., Schuler, J., Vining, R., Williams, S. (2009). Counting carbon on the farm: Reaping the benefits of carbon offset programs. Journal of Soil and Water Conservation, 64, 30A-40A. Pimentel, D., Marklein, A., Toth, M. A., Karpoff, M. N., Paul, G. S., Mccormack, R., Kyriazis, J., Krueger, T. (2009). Food Versus Biofuels : Environmental and Economic Costs. Hum Ecol, 37, 1–12. Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., ... & Gorby, Y. A. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences, 111(35), 12883-12888. Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands. 31 (5), 831–842. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series B, 84(571), 260-276. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and environmental microbiology, 70(9), 5373–5382. Ranatunga, T.,Hiramatsu, K., & Onishi, T. (2018). Controlling the process of denitrification in flooded rice soils by using microbial fuel cell applications. Agricultural Water Management, 206, 11-19. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098–1101. Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. (2018). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 69, 10–20. Steinberg, L. M., & Regan, J. M. (2008). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Applied and Environmental Microbiology, 74(21), 6663-6671. Steinberg, L. M., & Regan, J. M. (2009). mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology, 75(13), 4435-4442. Strik, D.P.B.T.B., Bert, H.V.M.H., Snel, J.F.H., & Buisman, C.J.N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research,, 32(9), 870-876. Strik, D.P.B.T.B., Timmers, R.A., Helder, M., Steinbusch, K.J.J., Hamelers, H.V.M. , & Buisman, C.J.N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol., 29, 41-49. Sun, X., Song, C., Guo, Y., Wang, X., Yang, G., Li, Y., Mao, R. & Lu, Y. (2012). Effect of plants on methane emissions from a temperate marsh in different seasons. Atmospheric environment, 60, 277-282. Sykes, P. J., Neoh, S. H., Brisco, M. J., Hughes, E., Condon, J., & Morley, A. A. (1992). Quantitation of targets for PCR by use of limiting dilution. BioTechniques, 13(3), 444–449. Takai, Y. A. S. U. O. (1969). The mechanism of reduction in paddy soil. Jpn Agri Res, 4(2), 23. Timmers, R. A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. M. (2010). Long-term performance of a plant microbial fuel cell with Spartina anglica, Applied microbiology and biotechnology, 86(3), 973–981. Throbäck, I. N., Enwall, K., Jarvis, A., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS microbiology ecology, 49(3), 401–417. Uddin, M. N., Robinson, R. W., Buultjens, A., Al Harun, M. A. Y., & Shampa, S. H. (2017). Role of allelopathy of Phragmites australis in its invasion processes. Journal of Experimental Marine Biology and Ecology, 486, 237-244. USSL Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook, 60.Washington DC, USA. Vogelstein, B., & Kinzler, K. W. (1999). Digital PCR. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9236–9241. Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019). The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. The Science of the total environment, 656, 270–279. Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543-550. Wijler, J., & Delwiche, C. C. (1954). Investigations on the denitrifying process in soil. Plant and soil, 5, 155-169. Wolf, I., & Russow, R. (2000). Different pathways of formation of N2O, N2 and NO in black earth soil. Soil Biology and Biochemistry, 32, 229-239. Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33, 1723-1732. Yang, S.S., & Chang, H.L. (1998). Effect of environmental conditions on methane production and emission from paddy soil. Agriculture Ecosystems & Environment, 69, 69-80. Yang, Y., Xu, M., Guo, J., & Sun, G. (2012). Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry, 47(12), 1707–1714. Yang, Y., Zhao, Y., Tang, C., Xu, L., Morgan, D., & Liu, R. (2020). Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chemical Engineering Journal, 392, 123708. Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and bioengineering, 89(6), 670–679. 楊盛行(1999)。台灣北部掩埋場及濕地之甲烷釋放及減量對策(Ⅱ)。行政院國家科學委員會計畫成果報告(編號:NSC88-2621-P002-014),未出版。 劉怡里(2016)。數位化基因偵測系統簡介。共同研究室電子報,33。 林浩潭(1999)。施肥與土壤鹽分累積。青蒜綜合管理,17-24。
|