跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪愷鈞
研究生(外文):Kai-Chun Hung
論文名稱:植物微生物燃料電池對溫室氣體排放及相關功能性基因之影響
論文名稱(外文):Effects of Plant Microbial Fuel Cell on Greenhouse Gas Emissions and Related Functional Genes
指導教授:于昌平
指導教授(外文):Chang-Ping Yu
口試委員:王金燦蕭友晉童心欣
口試委員(外文):Chin-Tsan WangYo-Jin ShiauHsin-Hsin Tung
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:植物微生物燃料電池甲烷氧化亞氮功能性基因數位核酸偵測系統
外文關鍵詞:Plant microbial fuel cellMethaneNitrous oxideFunctional geneDigital PCR
DOI:10.6342/NTU202003646
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物微生物燃料電池(Plant microbial fuel cell, PMFC)作為一種新興的綠色能源,具有透過植物將太陽能轉換為電力之能力,藉由系統內部產電菌與甲烷菌、脫硝菌的競爭可能有溫室氣體減量的效果。本研究之目的在於探討植物微生物燃料電池技術應用於濕地對溫室氣體(甲烷和氧化亞氮)的減量以及產電效能,並比較PMFC應用於無鹽害土和鹽害土的差異性。同時對土壤中甲烷、氧化亞氮相關功能性基因進行定量,以了解隨著PMFC系統操作土壤中的功能性菌群變化,以及功能性基因與溫室氣體排放之間的相互關係。
結果顯示無鹽害土PMFC閉路及SMFC (Sediment microbial fuel cell)閉路產生之平均電壓分別為0.21 ± 0.07 V、0.34 ± 0.08 V,PMFC電壓輸出低於SMFC,與文獻中之結果有所出入,可能與研究時期為冬季有關;鹽害土PMFC閉路、SMFC閉路產生之平均電壓分別為0.06 ± 0.04 V、0.02 ± 0.02 V,推測是高鹽度對植物和微生物造成抑制,進而影響電壓輸出。
PMFC系統在產電良好的情況下有甲烷減量的效果,減少氧化亞氮排放的能力則不明確。無鹽害土PMFC甲烷通量由閉路低於開路轉變為閉路高於開路是由於甲烷菌增加,SMFC開路的甲烷菌豐度高於閉路,與SMFC甲烷通量結果相符。鹽害土的甲烷菌豐度隨著時間有上升但幅度不大,鹽害土的甲烷菌豐度遠低於無鹽害土,驗證了鹽害土甲烷通量明顯低於無鹽害土的結果。無鹽害土與鹽害土norB、nosZ、nirK和nirS基因的豐度數量級相當,與兩者氧化亞氮通量差異不大的結果一致。本研究結果尚無法清楚解釋脫硝菌與產電菌的競爭,若要探討脫硝菌與產電菌的關係需要更進一步研究。
Plant microbial fuel cell (PMFC), as a emerging green energy source, has the ability to convert solar energy into electricity through plants. It is hypothesized that through competition between electricity-generating bacteria and methanogens and denitrifying bacteria, greenhouse gas emissions could be reduced. The aim of this study is to explore the reduction of greenhouse gases (methane and nitrous oxide) and the power generation efficiency of PMFC technology applied to wetlands, and to compare the difference between PMFC applied to fresh and salt-affected soil. Meanwhile, by quantifying the functional genes related to methane and nitrous oxide in the soil, we can understand the functional consortium shifts as the PMFC systems operate and the correlation between functional genes and greenhouse gas emissions.
The results showed that the average voltages generated by fresh soil close circuit PMFC and close circuit SMFC (Sediment microbial fuel cell) were 0.21 ± 0.07 V and 0.34 ± 0.08 V, respectively. PMFC voltage output was lower than SMFC, which is inconsistent with the literature and may be related to the study period being winter. In salt-affected soil, the average voltages of close circuit PMFC and close circuit SMFC were 0.06 ± 0.04 V and 0.02 ± 0.02 V, respectively. The inhibition of plant and microorganism growth by high salinity may cause the low voltage output.
The PMFC system may have an effect on methane reduction under optimal operation, but the ability to reduce nitrous oxide emissions is unclear. In fresh soil, the PMFC methane flux change from close circuit lower than open circuit to the opposite was due to increased methanogens. In addition, the abundance of methanogens in open circuit SMFC is higher than that in close circuit, which is consistent with the results of SMFC methane flux. The abundance of methanogens in salt-affected soil increased slightly with time, and is much lower than that in fresh soil, which verifies that the methane flux of salt-affected soil is significantly lower than that of fresh soil. The abundances of the norB, nosZ, nirK and nirS genes of fresh soil and salt-affected soil were of the same order of magnitude, which is consistent with the little difference in nitrous oxide flux between the two. From the results of this study, the competition between denitrifying bacteria and electricity-generating bacteria cannot be clearly explained. Further research is required to provide evidence of the relationship between denitrifying bacteria and electricity-generating bacteria.
論文口試委員審定書 I
致謝 II
摘要 III
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 微生物燃料電池發展與原理 3
2.1.1微生物燃料電池發展 3
2.1.2微生物燃料電池的發電原理 4
2.1.3電子傳遞機制 4
2.2 植物微生物燃料電池 7
2.2.1植物微生物燃料電池原理 7
2.2.2 植物微生物燃料電池應用 8
2.2.3土壤鹽份對植物微生物燃料電池之影響 9
2.3 濕地溫室氣體 12
2.3.1濕地溫室氣體排放 12
2.3.2甲烷及氧化亞氮相關功能性基因 13
2.3.3濕地溫室氣體減量 14
2.4 數位核酸偵測系統(digital PCR) 16
第三章 材料與方法 17
3.1 研究架構 17
3.2 植物微生物燃料電池結構與運行 19
3.2.1實驗土壤來源 19
3.2.2植物選擇 19
3.2.3植物微生物燃料電池架設 20
3.2.4植物微生物燃料電池運行 21
3.3 土壤性質分析 22
3.3.1採樣及保存 22
3.3.2土壤含水率 22
3.3.3土壤元素分析 23
3.3.4土壤酸鹼值 23
3.3.5土壤導電度 24
3.4 溫室氣體通量分析 25
3.4.1氣體採樣罩設計 25
3.4.2氧化亞氮與甲烷 25
3.5 微生物分析方法 28
3.5.1土壤微生物樣本保存 28
3.5.2土壤DNA萃取 28
3.5.3微滴式數位核酸偵測系統(droplet digital PCR, ddPCR) 30
3.5.4次世代定序(Next generation sequencing, NGC) 33
3.6 統計分析 34
第四章 結果與討論 35
4.1 植物微生物燃料電池之產電 35
4.2 土壤酸鹼值變化 40
4.3 土壤導電度變化 44
4.4 植物微生物燃料電池對溫室氣體通量之影響 47
4.2.1甲烷通量 47
4.2.2氧化亞氮通量 49
4.5 植物微生物燃料電池對基因豐度之影響 51
4.5.1微滴式數位核酸偵測系統品保品管 51
4.5.2細菌與古菌16S rDNA基因 52
4.5.3產甲烷功能性基因 55
4.5.4氧化亞氮相關功能性基因 57
4.5.5菌群結構 64
第五章 結論與建議 67
5.1 結論 67
5.2 建議 69
第六章 參考文獻 71
附錄 81
Akiyama, H., Yagi, K., & Yan, X. (2005). Direct N2O emissions from rice fields: summary of available data. Glob. Bio. Geo. Chem., Cycles 19 GB 1005.
Allen, R. M., & Bennetto, H. P. (1993). Microbial Fuel Cells: Electricity Production from Carbohydrates. Applied Biochemistry and Biotechnology, 39, 27-40.
Arends, J. B., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., Rabaey, K., Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol, 98(7), 3205-17.
Audet, J., Hoffmann, C. C., Andersen, P. M., Baattrup-Pedersen, A., Johansen, J. R., Larsen, S. E., Kjaergaard, C., Elsgaard, L. (2014). Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments: Emission, uptake and controlling factors. Soil Biology & Biochemistry, 68, 291-299.
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol, 57, 233-66.
Bergman, I., Klarqvist, M., & Nilsson, M. (2000). Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. FEMS Microbiology Ecology. 33, 181-189.
Braker, G., & Tiedje, J. M. (2003). Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and environmental microbiology, 69(6), 3476-3483.
Camacho, J. V., Romero, L. R., Marchante, C. M. F., Moralesa, F. J. F., & Rodrigo, M. A. R. (2017). The salinity effects on the performance of a constructed wetland-microbial fuel cell. Ecological Engineering, 107, 1–7.
Chen, Z., Lin, S., Yao, Z., Zheng, X., Gschwendtner, S., Schloterd, M., Liu, M., Zhangb, Y., Butterbach-Bahl, K., Dannenmann, M. (2018). Enhanced nitrogen cycling and N2O loss in water-saving ground cover rice production systems (GCRPS). Soil Biology and Biochemistry, 121, 77-86.
Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., & Thurston, C. F. (1984). Electron‐transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism-mediator-substrate combinations. Journal of chemical technology and biotechnology. Biotechnology, 34(1), 13-27.
De Schamphelaire, L., Van den Bossche, L., Dang, H. S., Hofte, M., Boon, N., Rabaey, K., & Verstraete, W. (2008). Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol, 42(8), 3053–3058.
Fang, Z., Song, H., Cang, N., & Li, X. (2015). Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens. Bioelectron, 68, 135–141.
Fitzpatrick, R. W., Mosley, L. M., & Cook, F. J. (2017). Understanding and managing irrigated acid sulfate and salt-affected soils: A handbook for the Lower Murray Reclaimed Irrigation Area. DOI: 10.20851/murray-soils
Freguia, S., Rabaey, K., Yuan, Z. G., & Keller, J. (2008). Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol, 42(21), 7937-7943.
Habermann, W., & Pommer, E. H. (1991). Biological fuel cells with sulphide storage capacity. Applied microbiology and biotechnology, 35(1), 128-133.
Hallin, S., & Lindgren, P. E. (1999). PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied and environmental microbiology, 65(4), 1652–1657.
Helder, M., Strik, D. P., Hamelers, H. V., Kuhn, A. J., Blok, C., & Buisman, C. J. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource technology, 101(10), 3541–3547.
Helder, M., Chen, W.S., Van der Harst, E.J.M., Strik, D.P.B.T.B., Hamelers, H.V.M., Buisman, C.J.N., & Potting, J. (2013). Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell, Biofuels Bioproducts and Biorefining, 7(1), 52-64.
Henry, S., Bru, D., Stres, B., Hallet, S., & Philippot, L. (2006). Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and environmental microbiology, 72(8), 5181–5189.
Holzman D. C. (2005). Microbe power. Environ Health Persp ,113, A754–A757.
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK and USA.
Ishii, S., Hotta, Y., & Watanabe, K. (2008). Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem, 72(2), 286-294.
Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol, 79, 43–49.
Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., ... & Tatsumi, H. (1999). Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques, 13(7), 475-478.
Kim, S. O., & Kim, K. W. (2001). Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis. Journal of hazardous materials, 85(3), 195–211.
Kotloski, N. J., & Gralnick, J. A. (2013). Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio, 4(1), e00553-12.
Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol, 296(1-4), 1-22.
Lin, B., & Lu, Y. (2015). Bacterial and archaeal guilds associated with electrogenesis and methanogenesis in paddy field soil. Geoderma, 259, 362-369.
Liu, S., Feng, X., & Li, X. (2017). Bioelectrochemical approach for control of methane emission from wetlands. Bioresource Technology, 241, 812–820.
Liu, Y., & Whitman, W. B. (2008). Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann N Y Acad Sci., 1125, 171‐189.
Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181-5192.
Logan, B. E., Zikmund, E., Yang, W., Rossi, R., Kim, K. Y., Saikaly, P. E., & Zhang, F. (2018). Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells. Environmental Science & Technology, 52(15), 8977–8985.
Lu, Z., Deng, Y., Van Nostrand, J. D., He, Z., Voordeckers, J., Zhou, A., Lee, Y. J., Mason, O. U., Dubinsky, E. A., Chavarria, K. L., Tom, L. M., Fortney, J. L., Lamendella, R., Jansson, J. K., D'haeseleer, P., Hazen, T. C., Zhou, J. (2012). Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. The ISME journal, 6(2), 451–460.
Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E., Leang, C., Kim, B. C., ... & Rotello, V. M. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature nanotechnology, 6(9), 573-579.
Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., & Minami, K. (1996). Nitrous oxide emissions from agricultural fields: assessment measurement and mitigation. Plant Soil, 181, 95–108.
Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695–700.
Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants. Journal of Water Process Engineering, 32, 100930.
Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., Lehl, H. K., Thung, W. E., Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration inup-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour. Technol, 224, 265–275.
Paustian, K., Brenner, J., Easter, M., Killian, K., Ogle, S., Olson, C., Schuler, J., Vining, R., Williams, S. (2009). Counting carbon on the farm: Reaping the benefits of carbon offset programs. Journal of Soil and Water Conservation, 64, 30A-40A.
Pimentel, D., Marklein, A., Toth, M. A., Karpoff, M. N., Paul, G. S., Mccormack, R., Kyriazis, J., Krueger, T. (2009). Food Versus Biofuels : Environmental and Economic Costs. Hum Ecol, 37, 1–12.
Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., ... & Gorby, Y. A. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences, 111(35), 12883-12888.
Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands. 31 (5), 831–842.
Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series B, 84(571), 260-276.
Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and environmental microbiology, 70(9), 5373–5382.
Ranatunga, T.,Hiramatsu, K., & Onishi, T. (2018). Controlling the process of denitrification in flooded rice soils by using microbial fuel cell applications. Agricultural Water Management, 206, 11-19.
Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098–1101.
Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. (2018). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 69, 10–20.
Steinberg, L. M., & Regan, J. M. (2008). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Applied and Environmental Microbiology, 74(21), 6663-6671.
Steinberg, L. M., & Regan, J. M. (2009). mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology, 75(13), 4435-4442.
Strik, D.P.B.T.B., Bert, H.V.M.H., Snel, J.F.H., & Buisman, C.J.N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research,, 32(9), 870-876.
Strik, D.P.B.T.B., Timmers, R.A., Helder, M., Steinbusch, K.J.J., Hamelers, H.V.M. , & Buisman, C.J.N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol., 29, 41-49.
Sun, X., Song, C., Guo, Y., Wang, X., Yang, G., Li, Y., Mao, R. & Lu, Y. (2012). Effect of plants on methane emissions from a temperate marsh in different seasons. Atmospheric environment, 60, 277-282.
Sykes, P. J., Neoh, S. H., Brisco, M. J., Hughes, E., Condon, J., & Morley, A. A. (1992). Quantitation of targets for PCR by use of limiting dilution. BioTechniques, 13(3), 444–449.
Takai, Y. A. S. U. O. (1969). The mechanism of reduction in paddy soil. Jpn Agri Res, 4(2), 23.
Timmers, R. A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. M. (2010). Long-term performance of a plant microbial fuel cell with Spartina anglica, Applied microbiology and biotechnology, 86(3), 973–981.
Throbäck, I. N., Enwall, K., Jarvis, A., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS microbiology ecology, 49(3), 401–417.
Uddin, M. N., Robinson, R. W., Buultjens, A., Al Harun, M. A. Y., & Shampa, S. H. (2017). Role of allelopathy of Phragmites australis in its invasion processes. Journal of Experimental Marine Biology and Ecology, 486, 237-244.
USSL Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook, 60.Washington DC, USA.
Vogelstein, B., & Kinzler, K. W. (1999). Digital PCR. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9236–9241.
Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019). The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. The Science of the total environment, 656, 270–279.
Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543-550.
Wijler, J., & Delwiche, C. C. (1954). Investigations on the denitrifying process in soil. Plant and soil, 5, 155-169.
Wolf, I., & Russow, R. (2000). Different pathways of formation of N2O, N2 and NO in black earth soil. Soil Biology and Biochemistry, 32, 229-239.
Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33, 1723-1732.
Yang, S.S., & Chang, H.L. (1998). Effect of environmental conditions on methane production and emission from paddy soil. Agriculture Ecosystems & Environment, 69, 69-80.
Yang, Y., Xu, M., Guo, J., & Sun, G. (2012). Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry, 47(12), 1707–1714.
Yang, Y., Zhao, Y., Tang, C., Xu, L., Morgan, D., & Liu, R. (2020). Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chemical Engineering Journal, 392, 123708.
Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and bioengineering, 89(6), 670–679.
楊盛行(1999)。台灣北部掩埋場及濕地之甲烷釋放及減量對策(Ⅱ)。行政院國家科學委員會計畫成果報告(編號:NSC88-2621-P002-014),未出版。
劉怡里(2016)。數位化基因偵測系統簡介。共同研究室電子報,33。
林浩潭(1999)。施肥與土壤鹽分累積。青蒜綜合管理,17-24。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊