跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳秀瑜
研究生(外文):Hsiu-Yu Chen
論文名稱:微波誘導製備氧化鈦奈米管於可見光催化產氫之研究
論文名稱(外文):Microwave-Induced Titanate Nanotubes for Visible-Light-Driven Hydrogen Production
指導教授:駱尚廉駱尚廉引用關係
指導教授(外文):Shang-Lien Lo
口試委員:江康鈺陳奕宏胡景堯劉雅瑄
口試委員(外文):Kung-Yuh ChiangYi-Hung ChenChing-Yao HuYa-Hsuan Liou
口試日期:2020-08-11
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:強金屬作用力硫化鎘光腐蝕氧化鈦奈米管光催化產氫
外文關鍵詞:Strong metal-support interactionPhotocorrosion of cadium sulfideTitanate nanotubesPhotocatalytic hydrogen evolution
DOI:10.6342/NTU202004166
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微波誘導製備氧化鈦奈米管(TNTs),運用於紫外線和可見光下催化產氫,其中TiO2 (P25)不僅用於TNTs合成之原料,同時作為與TNTs表現進行比較之參考載體,由TNTs之UV-Vis分光光譜分析顯示,修飾共觸媒後,吸收光譜偏移至可見光區之位移大於TiO2。
本研究以產氫量作為評估光催化性能,首先以Pt分別修飾TiO2及TNTs,分別於紫外光及可見光下進行光催化甲醇產氫,實驗結果顯示,在20%甲醇溶液中,在紫外線和可見光照射下,Pt/TNTs產氫率高於Pt/TiO2。由於甲醇於光催化產氫先氧化為甲醛,再氧化為甲酸,而甲酸可能氧化為CO及H2O或CO2及H2,且由TNTs及Pt/TNTs之產氫結果顯示CO生成量分別較TiO2和Pt/TiO2高,可確認TNTs作為光觸媒載體可較Pt/TiO2提高由甲酸生成H2之光催化選擇性,此結果推測係因CO(0.38 nm)之動力學直徑大於CO2(0.33 nm)之動力學直徑,故CO於TNTs反應系統不易擴散致不易使甲酸氧化為CO及H2O。
且為進一步聚焦甲酸產氫效率及提高可見光之光催化能力,續以10%甲酸溶液進行試驗,以Pt、CdS分別修飾TiO2及TNTs,結果顯示,CdS/TNTs光催化能力高於CdS /TiO2,另以光沉積法負載Pt時,Pt(P)/ CdS/TNTs產氫率為661.1μmolg-1 h-1,產氫率為以熱含浸法披覆Pt之Pt(T)/CdS/TNTs的3.6倍,推測是因光沉積法能均勻披覆Pt納米顆粒,避免所披覆之金屬如熱含浸法之團聚,故能有效地促進電子電洞對之分離。
此外,本研究以X光光電子能譜儀(XPS)分析觸媒表面元素價態,結果顯示,由於Pt和TNTs之間強金屬作用力(strong metal-support interaction),使TNTs上Pt束縛能較零價態略低、Ti之束縛能提高之情形,且在反應3小時後,TNTs上之CdS也未顯示有氧化後產物(如S0或S6 +),因此可推測TNTs有助於避免CdS之光腐蝕,因此,以TNTs作為載體有助於提昇光催化反應。
Titanate nanotubes (TNTs) fabricated through microwave-assisted synthesis were examined for their ability to catalyze hydrogen production under UV and visible light irradiation. Herein, TiO2 was used not only as the raw material for TNT synthesis but also as a reference support to compare its performance with that of TNTs. The UV-Vis spectral analyses of the TNT composites showed greater shifts toward the visible region after co-catalysts loading than the spectra of TiO2.
The photocatalytic performances were evaluated by measuring the hydrogen production, and Pt loaded on TiO2 and TNTs were examined for their ability to catalyze hydrogen production. The experimental results showed that Pt/TNTs exhibited higher activity than Pt/TiO2 from an aqueous solution containing 20 vol% methanol solution under UV and visible light irradiation. Furthermore, the presumed mechanism of the photocatalytic conversion of a methanol solution to H2 is the oxidation of methanol and transformation to formaldehyde and then formic acid. Then, formic acid is transformed to CO and H2O or CO2 and H2. Because bare TNTs and Pt/TNTs showed lower CO generation than bare TiO2 and Pt/TiO2, TNT composites enhanced the photocatalytic selectivity for H2 generation from formic acid to a greater extent than Pt/TiO2. Because the kinetic diameter of CO (0.38 nm) is larger than that of CO2 (0.33 nm), this result may be attributed to the inability of CO to diffuse into the pores of TNTs because of the diameter difference.
To enhance the photocatalytic performances from an aqueous solution containing 10 vol% formic acid solution under visible light irradiation, the composites formed from Pt, CdS, and titanate nanotubes (TNTs) were examined. Experimental results showed that CdS/TNTs exhibited much higher activity than CdS/TiO2. And TNT composites with Pt loading by the photo-deposition method had a significantly enhanced photoactivity and exhibited a hydrogen production rate of 661.1 μmol g-1 h−1, which is approximately 3.6 times higher than that observed for Pt deposited by the thermal impregnation method. This result indicates that smaller and more uniform Pt nanoparticles efficiently promoted the separation of photogenerated charges.
Furthermore, the valence states of the catalysts were determined from X-ray photoelectron spectroscopy (XPS) analysis. XPS results showed negative shifts of the Pt binding energies and positive shifts of Ti binding energies due to the strong metal-support interaction between Pt and TNTs. And the TNT composites showed no significant amount of oxidized S0 or S6+ on the catalyst surface even after 3 h of reaction. Thus, we conclude that the photocorrosion of CdS was significantly inhibited when combined with TNTs during the photocatalytic reactions. Thus, the remarkably high photocatalytic efficiency of TNT composites facilitates their application as promising photocatalysts.
目錄
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的及內容 2
第二章 文獻回顧 3
2-1 光觸媒及產氫理論 3
2-1-1 光催化基本原理 3
2-1-2 光催化產氫基本原理 4
2-1-3 常見光觸媒 8
2-2 二氧化鈦 11
2-3 氧化鈦奈米管 13
2-3-2 氧化鈦奈米管之製備方法 13
2-3-3 氧化鈦奈米管(NaxH2-XTi3O7)之形成機制 16
2-3-4 氧化鈦奈米管之應用 17
2-4 微波誘導製備氧化鈦奈米管 (MICROWAVE-INDUCED TREATMENT) 21
第三章 材料與方法 22
3-1 實驗設計 22
3-2 藥品與設備 23
3-2-1 藥品 23
3-2-2 設備 23
3-3 材料製備 25
3-3-1 氧化鈦奈米管之製備 25
3-3-2 光催化產氫觸媒材料之製備 26
3-4 光催化反應實驗 30
3-5 分析儀器 33
3-5-1 氣相層析儀-熱導偵測器(Gas Chromatography-Thermal Conductivity Detector,GC-TCD) 33
3-5-2 場發射槍掃描式電子顯微鏡/X射線能量分散光譜儀(Field Emission Scanning electron microscope and energy dispersive spectrometer, FEG-SEM/EDS) 34
3-5-3 場發射槍穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 35
3-5-4 X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 35
3-5-5 紫外線-可見光光譜儀(UV-Vis Spectrophotometer) 36
3-5-6 廣角X光粉末繞射儀(Wide Angle X-Ray Powder Diffractometer, WXRD) 37
第四章 結果與討論 39
4-1 光催化甲醇產氫能力之探討 39
4-1-1 觸媒結構分析 39
4-1-2 甲醇光重組產氫試驗 49
4-1-3 機制探討 52
4-2 光催化甲酸產氫能力之探討 55
4-2-1 觸媒結構分析 55
4-2-2 甲酸光重組產氫試驗 68
4-2-3 機制探討 71
第五章 結論與建議 73
5-1 結論 73
5-2 建議 73
第六章 參考文獻 75
Ahmad, H., S. K. Kamarudin, L. J. Minggu and M. Kassim (2015). "Hydrogen from photo-catalytic water splitting process: A review." Renewable and Sustainable Energy Reviews 43: 599-610.
Al-Azri, Z. H. N., M. AlOufi, A. Chan, G. I. N. Waterhouse and H. Idriss (2019). "Metal Particle Size Effects on the Photocatalytic Hydrogen Ion Reduction." ACS Catalysis 9(5): 3946-3958.
Al-Azri, Z. H. N., W.-T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss and G. I. N. Waterhouse (2015). "The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures." Journal of Catalysis 329: 355-367.
Albu, S. P., A. Ghicov, J. M. Macak, R. Hahn and P. Schmuki (2007). "Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications." Nano Letters 7(5): 1286-1289.
Bavykin, D. V., J. M. Friedrich and F. C. Walsh (2006). "Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications." Advanced Materials 18(21): 2807-2824.
Boddien, A. and H. Junge (2011). "Acidic ideas for hydrogen storage." Nature Nanotechnology 6: 265.
Cai, J., Z. a. Huang, K. Lv, J. Sun and K. Deng (2014). "Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity." RSC Advances 4(38): 19588-19593.
Candal, R. J., W. A. Zeltner and M. A. Anderson (2000). "Effects of pH and Applied Potential on Photocurrent and Oxidation Rate of Saline Solutions of Formic Acid in a Photoelectrocatalytic Reactor." Environmental Science & Technology 34(16): 3443-3451.
Chen, J., T. Ding, J. Cai, Y. Wang, M. Wu, H. Zhang, W. Zhao, Y. Tian, X. Wang and X. Li (2018). "Synergistic effects of K addition and hydrogenation of TiO2 on photocatalytic hydrogen production under simulated solar light." Applied Surface Science 453: 101-109.
Chen, J., S.L. Li, Z.L. Tao, Y.T. Shen and C.X. Cui (2003). "Titanium Disulfide Nanotubes as Hydrogen-Storage Materials." Journal of the American Chemical Society 125(18): 5284-5285.
Chen, Q., G. H. Du, S. Zhang and L.M. Peng (2002). "The structure of trititanate nanotubes." Acta Crystallographica Section B 58(4): 587-593.
Chen, Q., W. Zhou, G. Du and L.-M. Peng (2010). "Trititanate Nanotubes Made Via a Single Alkali Treatment." ChemInform 33: 219-219.
Chen, W.-T., A. Chan, D. Sun-Waterhouse, J. Llorca, H. Idriss and G. I. N. Waterhouse (2018). "Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures." Journal of Catalysis 367: 27-42.
Chen, W.T., A. G. Dosado, A. Chan, D. Sun-Waterhouse and G. I. N. Waterhouse (2018). "Highly reactive anatase nanorod photocatalysts synthesized by calcination of hydrogen titanate nanotubes: Effect of calcination conditions on photocatalytic performance for aqueous dye degradation and H2 production in alcohol-water mixtures." Applied Catalysis A: General 565: 98-118.
Chen, X., S. Cao, X. Weng, H. Wang and Z. Wu (2012). "Effects of morphology and structure of titanate supports on the performance of ceria in selective catalytic reduction of NO." Catalysis Communications 26: 178-182.
Chen, X., H. Wang, S. Gao and Z. Wu (2012). "Effect of pH value on the microstructure and deNOx catalytic performance of titanate nanotubes loaded CeO2." Journal of Colloid and Interface Science 377(1): 131-136.
Chen, Y.C., S.L. Lo and J. Kuo (2010). "Pb(II) adsorption capacity and behavior of titanate nanotubes made by microwave hydrothermal method." Colloids and Surfaces A: Physicochemical and Engineering Aspects 361(1–3): 126-131.
Chen, Y., S. Ji, W. Sun, Y. Lei, Q. Wang, A. Li, W. Chen, G. Zhou, Z. Zhang, Y. Wang, L. Zheng, Q. Zhang, L. Gu, X. Han, D. Wang and Y. Li (2020). "Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production." Angewandte Chemie International Edition 59(3): 1295-1301.
Chen, Y., L. Wang, G. Lu, X. Yao and L. Guo (2011). "Nanoparticles enwrapped with nanotubes: A unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water." Journal of Materials Chemistry 21(13): 5134-5141.
Chowdhury, P., G. Malekshoar, M. B. Ray, J. Zhu and A. K. Ray (2013). "Sacrificial Hydrogen Generation from Formaldehyde with Pt/TiO2 Photocatalyst in Solar Radiation." Industrial & Engineering Chemistry Research 52(14): 5023-5029.
Dang, H., X. Dong, Y. Dong, Y. Zhang and S. Hampshire (2013). "TiO2 nanotubes coupled with nano-Cu(OH)2 for highly efficient photocatalytic hydrogen production." International Journal of Hydrogen Energy 38(5): 2126-2135.
Daskalaki, V. M., M. Antoniadou, G. Li Puma, D. I. Kondarides and P. Lianos (2010). "Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater." Environmental Science & Technology 44(19): 7200-7205.
Doong, R.a. and C.Y. Liao (2017). "Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method." Journal of Hazardous Materials 322: 254-262.
Dosado, A. G., W.T. Chen, A. Chan, D. Sun-Waterhouse and G. I. N. Waterhouse (2015). "Novel Au/TiO2 photocatalysts for hydrogen production in alcohol–water mixtures based on hydrogen titanate nanotube precursors." Journal of Catalysis 330: 238-254.
Du, G. H., Q. Chen, R. C. Che, Z. Y. Yuan and L.M. Peng (2001). "Preparation and structure analysis of titanium oxide nanotubes." Applied Physics Letters 79(22): 3702-3704.
Dubnová, L., M. Zvolská, M. Edelmannová, L. Matějová, M. Reli, H. Drobná, P. Kuśtrowski, K. Kočí and L. Čapek (2019). "Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts." Applied Surface Science 469: 879-886.
Elbanna, O., S. Kim, M. Fujitsuka and T. Majima (2017). "TiO2 mesocrystals composited with gold nanorods for highly efficient visible-NIR-photocatalytic hydrogen production." Nano Energy 35: 1-8.
Enthaler, S., J. von Langermann and T. Schmidt (2010). "Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?" Energy & Environmental Science 3(9): 1207-1217.
Enzweiler, H., P. H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, M. H. N. Olsen Scaliante and N. R. C. Fernandes (2020). "Catalyst concentration, ethanol content and initial pH effects on hydrogen production by photocatalytic water splitting." Journal of Photochemistry and Photobiology A: Chemistry 388: 112051.
Fang, W., Y. Zhou, C. Dong, M. Xing and J. Zhang (2016). "Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped." Catalysis Today 266: 188-196.
Frank, S. N. and A. J. Bard (1977). "Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder." Journal of the American Chemical Society 99(1): 303-304.
Fujikawa, S. and T. Kunitake (2003). "Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates." Langmuir 19(16): 6545-6552.
Fujishima, A. and K. Honda (1972). "Electrochemical Photolysis of Water at a Semiconductor Electrode." Nature 238(5358): 37-38.
Galińska, A. and J. Walendziewski (2005). "Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents." Energy & Fuels 19(3): 1143-1147.
Gong, D., C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey (2001). "Titanium oxide nanotube arrays prepared by anodic oxidation." Journal of Materials Research 16(12): 3331-3334.
Grätzel, M. (2001). "Photoelectrochemical cells." Nature 414(6861): 338-344.
Gultom, N. S., H. Abdullah and D.-H. Kuo (2017). "Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution." International Journal of Hydrogen Energy 42(41): 25891-25902.
Gundiah, G., S. Mukhopadhyay, U. G. Tumkurkar, A. Govindaraj, U. Maitra and C. N. R. Rao (2003). "Hydrogel route to nanotubes of metal oxides and sulfates." Journal of Materials Chemistry 13(9): 2118-2122.
Guo, L., J. Yang, G. Hu, X. Hu, H. DaCosta and M. Fan (2016). "CO2 removal from flue gas with amine-impregnated titanate nanotubes." Nano Energy 25: 1-8.
He, Q., H. Sun, Y. Shang, Y. Tang, P. She, S. Zeng, K. Xu, G. Lu, S. Liang, S. Yin and Z. Liu (2018). "Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion." Applied Surface Science 441: 458-465.
Hoyer, P. (1996). "Formation of a Titanium Dioxide Nanotube Array." Langmuir 12(6): 1411-1413.
Hu, C.-C., J.-N. Nian and H. Teng (2008). "Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3." Solar Energy Materials and Solar Cells 92(9): 1071-1076.
Jaiswal, R., J. Bharambe, N. Patel, A. Dashora, D. C. Kothari and A. Miotello (2015). "Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity." Applied Catalysis B: Environmental 168-169: 333-341.
Jang, J. S., W. Li, S. H. Oh and J. S. Lee (2006). "Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light." Chemical Physics Letters 425(4-6): 278-282.
Jiang, X., X. Fu, L. Zhang, S. Meng and S. Chen (2015). "Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: fundamental understanding the effect of co-catalyst Pt and the Pt deposition route." Journal of Materials Chemistry A 3(5): 2271-2282.
Jimenez-Morales, I., S. Cavaliere, D. Jones and J. Roziere (2018). "Strong metal-support interaction improves activity and stability of Pt electrocatalysts on doped metal oxides." Physical Chemistry Chemical Physics 20(13): 8765-8772.
Joó, F. (2008). "Breakthroughs in Hydrogen Storage—Formic Acid as a Sustainable Storage Material for Hydrogen." ChemSusChem 1(10): 805-808.
Johnson, T. C., D. J. Morris and M. Wills (2010). "Hydrogen generation from formic acid and alcohols using homogeneous catalysts." Chemical Society Reviews 39(1): 81-88.
Kandiel, T. A., R. Dillert and D. W. Bahnemann (2009). "Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt–polypyrrole nanocomposites." Photochemical & Photobiological Sciences 8(5): 683-690.
Kandiel, T. A., R. Dillert, L. Robben and D. W. Bahnemann (2011). "Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions." Catalysis Today 161(1): 196-201.
Khalid, N. R., E. Ahmed, M. Ahmad, N. A. Niaz, M. Ramzan, M. Shakil, T. Iqbal and A. Majid (2016). "Microwave-assisted synthesis of Ag–TiO2/graphene composite for hydrogen production under visible light irradiation." Ceramics International 42(16): 18257-18263.
Kumar, D. P., S. Hong, D. A. Reddy and T. K. Kim (2017). "Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production." Applied Catalysis B: Environmental 212: 7-14.
López-Martín, A., F. Platero, A. Caballero and G. Colón (2020). "Thermo-Photocatalytic Methanol Reforming for Hydrogen Production over a CuPd−TiO2 Catalyst." ChemPhotoChem 4(8): 630-637.
López-Muñoz, M.J., A. Arencibia, L. Cerro, R. Pascual and Á. Melgar (2016). "Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents." Applied Surface Science 367: 91-100.
Lei, X., X. Li, Z. Ruan, T. Zhang, F. Pan, Q. Li, D. Xia and J. Fu (2018). "Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes." Journal of Molecular Liquids 266: 122-131.
Li, J.-J., M. Zhang, B. Weng, X. Chen, J. Chen and H.-P. Jia (2020). "Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance." Applied Surface Science 507: 145133.
Liu, N., X. Chen, J. Zhang and J. W. Schwank (2014). "A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications." Catalysis Today 225: 34-51.
Liu, Q.F., Q. Zhang, B.R. Liu, S. Li and J.J. Ma (2018). "Building surface defects by doping with transition metal on ultrafine TiO2 to enhance the photocatalytic H2 production activity." Chinese Journal of Catalysis 39(3): 542-548.
Liu, W., X. Zhao, T. Wang, D. Zhao and J. Ni (2016). "Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter." Chemical Engineering Journal 286: 427-435.
Liu, Y., L. Guo, W. Yan and H. Liu (2006). "A composite visible-light photocatalyst for hydrogen production." Journal of Power Sources 159(2): 1300-1304.
Liu, Y., Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao and H. Yu (2019). "2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution." Applied Catalysis B: Environmental 241: 236-245.
Luo, M., W. Yao, C. Huang, Q. Wu and Q. Xu (2015). "Shape effects of Pt nanoparticles on hydrogen production via Pt/CdS photocatalysts under visible light." Journal of Materials Chemistry A 3(26): 13884-13891.
Luo, S., H. Song, D. Philo, M. Oshikiri, T. Kako and J. Ye (2020). "Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %." Applied Catalysis B: Environmental 272: 118965.
Ma, J., F. Li, T. Qian, H. Liu, W. Liu and D. Zhao (2017). "Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb(II)." Chemical Engineering Journal 315: 191-200.
Marchal, C., A. Piquet, M. Behr, T. Cottineau, V. Papaefthimiou, V. Keller and V. Caps (2017). "Activation of solid grinding-derived Au/TiO2 photocatalysts for solar H2 production from water-methanol mixtures with low alcohol content." Journal of Catalysis 352: 22-34.
Martínez-Klimov, M. E., P. Hernández-Hipólito, M. Martínez-García and T. E. Klimova (2018). "Pd catalysts supported on hydrogen titanate nanotubes for Suzuki-Miyaura cross-coupling reactions." Catalysis Today 305: 58-64.
Mellmann, D., P. Sponholz, H. Junge and M. Beller (2016). "Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release." Chemical Society Reviews 45(14): 3954-3988.
Muniyappan, S., T. Solaiyammal, K. Sudhakar, A. Karthigeyan and P. Murugakoothan (2017). "Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties." Modern Electronic Materials 3(4): 174-178.
Naik, G. K., S. M. Majhi, K.U. Jeong, I.H. Lee and Y. T. Yu (2019). "Nitrogen doping on the core-shell structured Au@TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation." Journal of Alloys and Compounds 771: 505-512.
Ojeda, M. and E. Iglesia (2009). "Formic Acid Dehydrogenation on Au‐Based Catalysts at Near‐Ambient Temperatures." Angewandte Chemie 121(26): 4894-4897.
Ou, H.H., M. R. Hoffmann, C.H. Liao, J.H. Hong and S.L. Lo (2010). "Photocatalytic oxidation of aqueous ammonia over platinized microwave-assisted titanate nanotubes." Applied Catalysis B: Environmental 99(1–2): 74-80.
Ou, H.H., C.H. Liao, Y.H. Liou, J.H. Hong and S.L. Lo (2008). "Photocatalytic Oxidation of Aqueous Ammonia over Microwave-Induced Titanate Nanotubes." Environmental Science & Technology 42(12): 4507-4512.
Ou, H.H. and S.L. Lo (2007). "Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene." Journal of Molecular Catalysis A: Chemical 275(1): 200-205.
Ou, H.H. and S.L. Lo (2007). "Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application." Separation and Purification Technology 58(1): 179-191.
Pan, H., X. Zhao, Z. Fu, W. Tu, P. Fang and H. Zhang (2018). "Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites." Applied Surface Science 442: 547-555.
Park, H., W. Choi and M. R. Hoffmann (2008). "Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production." Journal of Materials Chemistry 18(20): 2379-2385.
Park, Y.-K., B.-J. Kim, S. Jeong, K.J. Jeon, K.H. Chung and S.C. Jung (2020). "Characteristics of hydrogen production by photocatalytic water splitting using liquid phase plasma over Ag-doped TiO2 photocatalysts." Environmental Research 188: 109630.
Peng, T., A. Hasegawa, J. Qiu and K. Hirao (2003). "Fabrication of Titania Tubules with High Surface Area and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method." Chemistry of Materials 15(10): 2011-2016.
Peng, Y.P., S.L. Lo, H.H. Ou and S.-W. Lai (2010). "Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis." Journal of Hazardous Materials 183(1–3): 754-758.
Perera, S. D., R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal and K. J. Balkus (2012). "Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity." ACS Catalysis 2(6): 949-956.
Rather, R. A., S. Singh and B. Pal (2017). "Visible and direct sunlight induced H2 production from water by plasmonic Ag-TiO2 nanorods hybrid interface." Solar Energy Materials and Solar Cells 160: 463-469.
Rice, C., S. Ha, R. I. Masel and A. Wieckowski (2003). "Catalysts for direct formic acid fuel cells." Journal of Power Sources 115(2): 229-235.
Rinaldi, F. G., A. F. Arif, T. Ogi, K. Okuyama and E. Tanabe (2017). "Strong metal-support interactions (SMSIs) between Pt and Ti3+ on Pt/TiOx nanoparticles for enhanced degradation of organic pollutant." Advanced Powder Technology 28(11): 2987-2995.
Roy, P., S. Berger and P. Schmuki (2011). "TiO2 Nanotubes: Synthesis and Applications." Angewandte Chemie International Edition 50(13): 2904-2939.
Ryu, J., S. Kim, H.J. Hong, J. Hong, M. Kim, T. Ryu, I.S. Park, K.S. Chung, J. S. Jang and B.G. Kim (2016). "Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: Removal vs. recovery." Chemical Engineering Journal 304: 503-510.
Sadanandam, G., D. K. Valluri and M. S. Scurrell (2017). "Highly stabilized Ag2O-loaded nano TiO2 for hydrogen production from glycerol: Water mixtures under solar light irradiation." International Journal of Hydrogen Energy 42(2): 807-820.
Sampaio, M. J., J. W. L. Oliveira, C. I. L. Sombrio, D. L. Baptista, S. R. Teixeira, S. A. C. Carabineiro, C. G. Silva and J. L. Faria (2016). "Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol." Applied Catalysis A: General 518: 198-205.
Sandoval, A., C. Hernández-Ventura and T. E. Klimova (2017). "Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis." Fuel 198: 22-30.
Saravanan, R., D. Manoj, J. Qin, M. Naushad, F. Gracia, A. F. Lee, M. M. Khan and M. A. Gracia-Pinilla (2018). "Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production." Process Safety and Environmental Protection 120: 339-347.
Shen, Q., J. Xue, H. Zhao, M. Shao, X. Liu and H. Jia (2017). "The role of crystalline TiO2 nanoparticle in enhancing the photocatalytic and photoelectrocatalytic properties of CdS nanorods." Journal of Alloys and Compounds 695: 1080-1087.
Si, Y., S. Cao, Z. Wu, Y. Ji, Y. Mi, X. Wu, X. Liu and L. Piao (2018). "What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation?" Applied Catalysis B: Environmental 220: 471-476.
Silva, L. A., S. Y. Ryu, J. Choi, W. Choi and M. R. Hoffmann (2008). "Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS." The Journal of Physical Chemistry C 112(32): 12069-12073.
Su, E. C., B.S. Huang and M.Y. Wey (2016). "Enhanced optical and electronic properties of a solar light-responsive photocatalyst for efficient hydrogen evolution by SrTiO3/TiO2 nanotube combination." Solar Energy 134: 52-63.
Subramaniam, M. N., P. S. Goh, N. Abdullah, W. J. Lau, B. C. Ng and A. F. Ismail (2017). "Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method." Journal of Nanoparticle Research 19(6): 220.
Sun, X. and Y. Li (2003). "Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes." Chemistry – A European Journal 9(10): 2229-2238.
T. Kasuga, M. H., A. Hoson, T. Sekino, K. Niihara, (1999). "Titania Nanotubes Prepared by Chemical Processing." Advanced Materials 11(15): 1307-1311.
Tan, H., P. Kong, M. Liu, X. Gu and Z. Zheng (2019). "Enhanced photocatalytic hydrogen production from aqueous-phase methanol reforming over cyano-carboxylic bifunctionally-modified carbon nitride." Chemical Communications 55(83): 12503-12506.
Tang, Z.-R., Y. Zhang and Y.J. Xu (2012). "Tuning the Optical Property and Photocatalytic Performance of Titanate Nanotube toward Selective Oxidation of Alcohols under Ambient Conditions." ACS Applied Materials & Interfaces 4(3): 1512-1520.
Thorne, A., A. Kruth, D. Tunstall, J. T. S. Irvine and W. Zhou (2005). "Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity." The Journal of Physical Chemistry B 109(12): 5439-5444.
Turki, A., C. Guillard, F. Dappozze, G. Berhault, Z. Ksibi and H. Kochkar (2014). "Design of TiO2 nanomaterials for the photodegradation of formic acid – Adsorption isotherms and kinetics study." Journal of Photochemistry and Photobiology A: Chemistry 279: 8-16.
Vattikuti, S. V. P., P. A. K. Reddy, P. C. NagaJyothi, J. Shim and C. Byon (2018). "Hydrothermally synthesized Na2Ti3O7 nanotube–V2O5 heterostructures with improved visible photocatalytic degradation and hydrogen evolution - Its photocorrosion suppression." Journal of Alloys and Compounds 740: 574-586.
Wan, C., L. Zhou, L. Sun, L. Xu, D.-g. Cheng, F. Chen, X. Zhan and Y. Yang (2020). "Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst." Chemical Engineering Journal 396: 125229.
Wang, F., T. Shen, Z. Fu, Y. Lu and C. Chen (2017). "Enhanced photocatalytic water-splitting performance using Fe-doped hierarchical TiO2ball-flowers." Nanotechnology 29(3): 035702.
Wang, Z., Y. Yin, T. Williams, H. Wang, C. Sun and X. Zhang (2016). "Metal link: A strategy to combine graphene and titanium dioxide for enhanced hydrogen production." International Journal of Hydrogen Energy 41(47): 22034-22042.
Wu, X., Q.Z. Jiang, Z.F. Ma, M. Fu and W.F. Shangguan (2005). "Synthesis of titania nanotubes by microwave irradiation." Solid State Communications 136(9-10): 513-517.
Wu, X. C. and Y. R. Tao (2002). "Growth of CdS nanowires by physical vapor deposition." Journal of Crystal Growth 242(3): 309-312.
Xu, X., Y. Liu, T. Wang, H. Ji, L. Chen, S. Li and W. Liu (2019). "Co-adsorption of ciprofloxacin and Cu(II) onto titanate nanotubes: Speciation variation and metal-organic complexation." Journal of Molecular Liquids 292: 111375.
Xu, Y., X. Li, M. Xiao and X. Xiong (2018). "Growth of hierarchical TiO2 flower-like microspheres/oriented nanosheet arrays on a titanium mesh for flexible dye-sensitized solar cells." CrystEngComm 20(40): 6280-6290.
Yan, J. and F. Zhou (2011). "TiO2 nanotubes: Structure optimization for solar cells." Journal of Materials Chemistry 21(26): 9406-9418.
Yang, J., Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang (2003). "Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2." Dalton Transactions(20): 3898-3901.
Yang, W.D., C. T. Nam, Z.J. Chung and H.-Y. Huang (2015). "Synthesis and metal ion sorption properties of peroxide-modified sodium titanate materials using a coprecipitation method." Surface and Coatings Technology 271: 57-62.
Yao, W., X. Song, C. Huang, Q. Xu and Q. Wu (2013). "Enhancing solar hydrogen production via modified photochemical treatment of Pt/CdS photocatalyst." Catalysis Today 199: 42-47.
Yoshida, R., Y. Suzuki and S. Yoshikawa (2005). "Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes." Materials Chemistry and Physics 91(2): 409-416.
Yu, H., X. Huang, P. Wang and J. Yu (2016). "Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst." The Journal of Physical Chemistry C 120(7): 3722-3730.
Yu, J., H. Yu, B. Cheng and C. Trapalis (2006). "Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes." Journal of Molecular Catalysis A: Chemical 249(1): 135-142.
Zeng, M., Z. Chai, X. Deng, Q. Li, S. Feng, J. Wang and D. Xu (2016). "Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid." Nano Research 9(9): 2729-2734.
Zhang, S., M. Li, J. Zhao, H. Wang, X. Zhu, J. Han and X. Liu (2019). "Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde." Applied Catalysis B: Environmental 252: 24-32.
Zhang, Y. J. and L. Zhang (2009). "Photocatalytic degradation of formic acid with simultaneous production of hydrogen over Pt and Ru-loaded CdS/Al-HMS photocatalysts." Desalination 249(3): 1017-1021.
Zhao, J., X. Wang, R. Chen and L. Li (2005). "Fabrication of titanium oxide nanotube arrays by anodic oxidation." Solid State Communications 134(10): 705-710.
Zhao, W., X. Wang, H. Sang and K. Wang (2013). "Synthesis of Bi-doped TiO2 Nanotubes and Enhanced Photocatalytic Activity for Hydrogen Evolution from Glycerol Solution." Chinese Journal of Chemistry 31(3): 415-420.
Zhao, X., Z. Cai, T. Wang, S. E. O’Reilly, W. Liu and D. Zhao (2016). "A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene." Applied Catalysis B: Environmental 187: 134-143.
Zhu, B., X. Zhang, S. Wang, S. Zhang, S. Wu and W. Huang (2007). "Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low-temperature CO oxidation." Microporous and Mesoporous Materials 102(1–3): 333-336.
Zhu, Z., C.-T. Kao, B.-H. Tang, W.-C. Chang and R.-J. Wu (2016). "Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light." Ceramics International 42(6): 6749-6754.
Zwilling, V., E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier (1999). "Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy." Surface and Interface Analysis 27(7): 629-637.
歐信宏 (2008). 微波水熱法合成氧化鈦奈米管 —特性鑑定與光催化潛勢之研究— 博士論文, 國立台灣大學環境工程學研究所.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top