跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡瑋珹
研究生(外文):Wei-Cheng Tsai
論文名稱:探討都市中細懸浮微粒上非極性有機物質濃度分布與污染源解析
論文名稱(外文):Evaluating the concentration distribution and source apportionment of non-polar organic compounds on fine particulate matter in an urban area
指導教授:吳章甫吳章甫引用關係
指導教授(外文):Chang-Fu Wu
口試委員:蔡詩偉陳志傑
口試委員(外文):Shih-Wei TsaiChih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境與職業健康科學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:細懸浮微粒(PM2.5)上的非極性有機物質(NPOC)源解析主成分分析(PCA)PAHs風險估計
外文關鍵詞:non-polar organic compounds(NPOC) for fine particulate matters(PM2.5)source apportionmentprincipal component analysis(PCA)risk estimate of PAHs
DOI:10.6342/NTU202000513
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
空氣污染在近年已經逐漸被視為重要議題。許多研究已經探討附著於空氣中細懸浮微粒(Particulate matters, PM2.5)上的非極性有機物質(Nonpolar organic compounds, NPOCs)。都市內有許多人居住在大樓內,但是暴露於空氣污染物的垂直面變化仍需要進一步的探討。本研究於2018年10月至2019年1月在臺北市區內的一棟大樓三個不同樓層(低、中、高樓層)的陽台架設採樣點。每週兩次於所有採樣點同時在石英纖維濾紙上採集二十四小時的PM2.5樣本,總共採集72個樣本。本研究分析的非極性有機物質包含24種Polycyclic aromatic hydrocarbons (PAHs)、16種Hopanes、12種Steranes、23種Alkanes、10種iso-/anteiso-alkanes,使用熱脫附氣相層析質譜法 (TD–GC/MS)分析並量化這些化學物質。為了瞭解這些污染物質的來源,本研究回顧這些有機物質來源之文獻,並搭配主成分分析(Principal component analysis, PCA)作為受體模式解析污染源。
大氣中濃度最高的有機物質族群在本研究中為Alkanes(10.08±4.51 ng/m3),而具有致癌風險的PAHs的濃度則為0.70±0.59 ng/m3,占所有分析的非極性有機物濃度5%。在垂直面上,Alkanes在中樓層有最高濃度,然而PAHs、Hopanes、Steranes和iso-/anteiso-alkanes濃度則隨著樓層升高而遞減。主成分分析結果顯示主要影響採樣點的污染源為多種石化燃燒活動(交通燃燒排放、天然氣燃燒等)和交通相關的揚塵。關於PAHs的風險估計,採樣期間平均致癌風險為1.46*10-6,比美國環保署建議的暴露風險標準10-6還要高。這項研究探討臺北市內附著在PM 2.5的非極性有機物質濃度變化。了解污染物於大氣中的濃度分布情況與潛在貢獻來源將有助於設計有效的控制策略。
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
表次 vi
圖次 vii
Chapter 1 介紹 1
Chapter 2 本研究分析物質的環境意義文獻回顧 5
2.1 PAHs 5
2.2 Hopanes、Steranes 5
2.3 Alkanes 6
2.4 支鏈烷烴類 6
Chapter 3 材料與方法 8
3.1 研究地區 8
3.2 採樣策略 8
3.2.1 採樣地點 8
3.2.2 採樣方法 9
3.3 化學物質分析 9
3.4 污染源解析 10
3.4.1定性污染源與資料前處理 11
3.5 PAHs風險估計 12
Chapter 4 結果與討論 14
4.1非極性有機物質濃度分布與探討 14
4.1.1 PAHs 14
4.1.2 Hopanes、Steranes 15
4.1.3 Alkanes 15
4.1.4 iso-/anteiso-alkanes 15
4.2 主成分分析結果與討論 16
4.3 各種類物質於垂直面濃度分布 18
4.4 PAHs風險估計 19
4.4.1 PAHs濃度風險估計與比較 19
4.4.2 濃度風險低估限制 19
4.5 PAHs揮發性與降解討論 20
4.6 研究限制 22
Chapter 5 結論與展望 23
Chapter 6 參考文獻 39
Chapter 7 附錄 48
附錄1. 放入主成分分析物質之雜訊比 48
附錄2. 主成分分析因素結構負荷量 49
附錄3. 非極性有機物質之族群濃度時序性分布圖 51
附錄4. 本研究分析非極性有機物質之環境意義、來源文獻回顧 53
Andreae, M. O., and Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6(10), 3131-3148.
Bi, X., Sheng, G., Feng, Y., Fu, J., and Xie, J. (2005). Gas- and particulate-phase specific tracer and toxic organic compounds in environmental tobacco smoke. Chemosphere, 61(10), 1512-1522.
Bi, X., Sheng, G., Peng, P. a., Chen, Y., Zhang, Z., and Fu, J. (2003). Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmospheric Environment, 37(2), 289-298.
Bruno, P., Caselli, M., de Gennaro, G., and Traini, A. (2001). Source apportionment of gaseous atmospheric pollutants by means of an absolute principal component scores (APCS) receptor model. Fresenius'' Journal of Analytical Chemistry, 371(8), 1119-1123.
Callén, M. S., Iturmendi, A., and López, J. M. (2014). Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167-177.
Cass, G. R. (1998). Organic molecular tracers for particulate air pollution sources. TrAC Trends in Analytical Chemistry, 17(6), 356-366.
Chen, H. Y., Teng, Y. G., and Wang, J. S. (2012). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Science of the Total Environment, 414, 293-300.
Chen, Y., Cao, J., Zhao, J., Xu, H., Arimoto, R., Wang, G., Han, Y., Shen, Z., and Li, G. (2014). n-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: Concentrations, seasonal variations, and sources. Science of the Total Environment, 470-471, 9-18.
Cooper, J. A., and Watson, J. G. (1980). Receptor Oriented Methods of Air Particulate Source Apportionment. Journal of the Air Pollution Control Association, 30(10), 1116-1125.
DeMarini, D. M., Brooks, L. R., Warren, S. H., Kobayashi, T., Gilmour, M. I., and Singh, P. (2004). Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environmental Health Perspectives, 112(8), 814-819.
DRI. (2005). Pre-firing and acceptance testing of quartz-fiber filters for aerosol and carbonaceous material sampling. Retrieved from
Eeftens, M., Tsai, M.-Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M., Cyrys, J., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dėdelė, A., Eriksen, K., Galassi, C., Gražulevičienė, R., Grivas, G., Heinrich, J., Hoffmann, B., Iakovides, M., Ineichen, A., Katsouyanni, K., Korek, M., Krämer, U., Kuhlbusch, T., Lanki, T., Madsen, C., Meliefste, K., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Oldenwening, M., Pennanen, A., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Stephanou, E., Sugiri, D., Udvardy, O., Vaskövi, É., Weinmayr, G., Brunekreef, B., and Hoek, G. (2012). Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 – Results of the ESCAPE project. Atmospheric Environment, 62, 303-317.
Farrar, N. J., Harner, T., Shoeib, M., Sweetman, A., and Jones, K. C. (2005). Field Deployment of Thin Film Passive Air Samplers for Persistent Organic Pollutants:  A Study in the Urban Atmospheric Boundary Layer. Environmental Science & Technology, 39(1), 42-48.
Feng, B. H., Li, L. J., Xu, H. B., Wang, T., Wu, R. S., Chen, J., Zhang, Y., Liu, S., Ho, S. S. H., Cao, J. J., and Huang, W. (2019). PM2.5 -bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. Journal of Environmental Sciences-China, 77, 11-19.
Fu, P., Kawamura, K., and Miura, K. (2011). Molecular characterization of marine organic aerosols collected during a round-the-world cruise. Journal of Geophysical Research: Atmospheres, 116(D13).
Gadi, R., Shivani, Sharma, S. K., and Mandal, T. K. (2019). Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India. Chemosphere, 221, 583-596.
Gao, Y., Wang, Z., Lu, Q.-C., Liu, C., Peng, Z.-R., and Yu, Y. (2017). Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model. Frontiers of Earth Science, 11(2), 347-360.
Geng, X., Zhong, G., Li, J., Cheng, Z., Mo, Y., Mao, S., Su, T., Jiang, H., Ni, K., and Zhang, G. (2019). Molecular marker study of aerosols in the northern South China Sea: Impact of atmospheric outflow from the Indo-China Peninsula and South China. Atmospheric Environment, 206, 225-236.
Gogou, A., Stratigakis, N., Kanakidou, M., and Stephanou, E. G. (1996). Organic aerosols in Eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Organic Geochemistry, 25(1), 79-96.
Grice, K., Lu, H., Zhou, Y., Stuart-Williams, H., and Farquhar, G. D. (2008). Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves. Phytochemistry, 69(16), 2807-2814.
Grimmer, G., Jacob, J., and Naujack, K. W. (1983). Profile of the polycyclic aromatic compounds from crude oils. Fresenius'' Zeitschrift für analytische Chemie, 314(1), 29-36.
Gu, Z., Feng, J., Han, W., Wu, M., Fu, J., and Sheng, G. (2010). Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China. Chemosphere, 80(7), 800-806.
Guo, H., Lee, S. C., Li, W. M., and Cao, J. J. (2003). Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmospheric Environment, 37(1), 73-82.
Han, Y., and Zhu, T. (2015). Health effects of fine particles (PM2.5) in ambient air. Sci China Life Sci, 58(6), 624-626.
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S. (2005). Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres, 110(D18).
Haque, M. M., Kawamura, K., Deshmukh, D. K., Fang, C., Song, W., Mengying, B., and Zhang, Y. L. (2019). Characterization of organic aerosols from a Chinese megacity during winter: predominance of fossil fuel combustion. Atmos. Chem. Phys., 19(7), 5147-5164.
Harrison, R. M., Smith, D. J. T., and Luhana, L. (1996). Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environmental Science & Technology, 30(3), 825-832.
He, L.-Y., Hu, M., Huang, X.-F., Yu, B.-D., Zhang, Y.-H., and Liu, D.-Q. (2004). Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment, 38(38), 6557-6564.
Helmig, D., Bauer, A., Müller, J., and Klein, W. (1990). Analysis of particulate organics in a forest atmosphere by thermodesorption GC/MS. Atmospheric Environment. Part A. General Topics, 24(1), 179-184.
Henry, R. C., Lewis, C. W., Hopke, P. K., and Williamson, H. J. (1984). Review of receptor model fundamentals. Atmospheric Environment (1967), 18(8), 1507-1515.
Herlekar, M. (2012). Chemical Speciation and Source Assignment of Particulate (PM10) Phase Molecular Markers in Mumbai. Aerosol and Air Quality Research.
Ho, S. S., Yu, J. Z., Chow, J. C., Zielinska, B., Watson, J. G., Sit, E. H., and Schauer, J. J. (2008). Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J Chromatogr A, 1200(2), 217-227.
Ho, S. S. H., and Yu, J. Z. (2004). In-injection port thermal desorption and subsequent gas chromatography–mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. Journal of Chromatography A, 1059(1-2), 121-129.
Hoek, G., Meliefste, K., Cyrys, J., Lewné, M., Bellander, T., Brauer, M., Fischer, P., Gehring, U., Heinrich, J., van Vliet, P., and Brunekreef, B. (2002). Spatial variability of fine particle concentrations in three European areas. Atmospheric Environment, 36(25), 4077-4088.
Hong, Z., Hong, Y., Zhang, H., Chen, J., Xu, L., Deng, J., Du, W., Zhang, Y., and Xiao, H. (2017). Pollution Characteristics and Source Apportionment of PM2.5-Bound n-Alkanes in the Yangtze River Delta, China. Aerosol and Air Quality Research, 17(8), 1985-1998.
Hu, D., Bian, Q., Lau, A. K. H., and Yu, J. Z. (2010). Source apportioning of primary and secondary organic carbon in summer PM2.5 in Hong Kong using positive matrix factorization of secondary and primary organic tracer data. Journal of Geophysical Research: Atmospheres, 115(D16).
Huang, X., Xue, J., and Guo, S. (2012). Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records. Frontiers of Earth Science, 6(1), 95-100.
Huang, X. H. H., Bian, Q., Ng, W., Louie, P., and Yu, J. (2014). Characterization of PM2.5 Major Components and Source Investigation in Suburban Hong Kong: A One Year Monitoring Study. Aerosol and Air Quality Research, 14, 235-250.
IARC. (2004). Tobacco smoke and involuntary smoking (1017-1606 (Print)
1017-1606). Retrieved from
IARC. (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Retrieved from
IARC. (2014). Diesel and gasoline engine exhaust and some nitroarenes. Retrieved from
Jung, K. H., Bernabe, K., Moors, K., Yan, B., Chillrud, S. N., Whyatt, R., Camann, D., Kinney, P. L., Perera, F. P., and Miller, R. L. (2011). Effects of Floor Level and Building Type on Residential Levels of Outdoor and Indoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in New York City. Atmosphere (Basel), 2(2), 96-109.
Kalaiarasan, M., Balasubramanian, R., Cheong, K., and Tham, K. (2009). Particulate-bound polycyclic aromatic hydrocarbons in naturally ventilated multi-storey residential buildings of Singapore: Vertical distribution and potential health risks. Building and Environment, 44(2), 418-425.
Kavouras, I. G., Stratigakis, N., and Stephanou, E. G. (1998). Iso- and Anteiso-Alkanes:  Specific Tracers of Environmental Tobacco Smoke in Indoor and Outdoor Particle-Size Distributed Urban Aerosols. Environmental Science & Technology, 32(10), 1369-1377.
Kawamura, K., Ishimura, Y., and Yamazaki, K. (2003). Four years'' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochemical Cycles, 17(1), 3-1-3-19.
Keshavarzi, B., Abbasi, S., Moore, F., Mehravar, S., Sorooshian, A., Soltani, N., and Najmeddin, A. (2018). Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage, 62(4), 803-818.
Keshavarzifard, M., Moore, F., Keshavarzi, B., and Sharifi, R. (2018). Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. Environmental Geochemistry and Health, 40(2), 721-735.
Khalili, N. R., Scheff, P. A., and Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542.
Kim Oanh, N. T., Tipayarom, A., Bich, T. L., Tipayarom, D., Simpson, C. D., Hardie, D., and Sally Liu, L. J. (2015). Characterization of gaseous and semi-volatile organic compounds emitted from field burning of rice straw. Atmospheric Environment, 119, 182-191.
Kloog, I., Zanobetti, A., Nordio, F., Coull, B. A., Baccarelli, A. A., and Schwartz, J. (2015). Effects of airborne fine particles (PM2.5 ) on deep vein thrombosis admissions in the northeastern United States. Journal of thrombosis and haemostasis : JTH, 13(5), 768-774.
Kotianová, P., Puxbaum, H., Bauer, H., Caseiro, A., Marr, I. L., and Čík, G. (2008). Temporal patterns of n-alkanes at traffic exposed and suburban sites in Vienna. Atmospheric Environment, 42(13), 2993-3005.
Lai, A. M., Carter, E., Shan, M., Ni, K., Clark, S., Ezzati, M., Wiedinmyer, C., Yang, X. D., Baumgartner, J., and Schauer, J. J. (2019). Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Science of the Total Environment, 646, 309-319.
Lee, C.-L., Huang, H.-C., Wang, C.-C., Sheu, C.-C., Wu, C.-C., Leung, S.-Y., Lai, R.-S., Lin, C.-C., Wei, Y.-F., Lai, I. C., Jiang, H., Chou, W.-L., Chung, W.-Y., Huang, M.-S., and Huang, S.-K. (2016). A new grid-scale model simulating the spatiotemporal distribution of PM2.5-PAHs for exposure assessment. Journal of Hazardous Materials, 314, 286-294.
Li, K., Christensen, E. R., Van Camp, R. P., and Imamoglu, I. (2001). PAHs in dated sediments of Ashtabula River, Ohio, USA. Environmental Science & Technology, 35(14), 2896-2902.
Liao, C.-M., Chio, C.-P., Chen, W.-Y., Ju, Y.-R., Li, W.-H., Cheng, Y.-H., Liao, V. H.-C., Chen, S.-C., and Ling, M.-P. (2011). Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment. Journal of Hazardous Materials, 190(1), 150-158.
Liao, H.-T., Chang, J.-C., Tsai, T.-T., Tsai, S.-W., Chou, C. C. K., and Wu, C.-F. (2019). Vertical distribution of source apportioned PM2.5 using particulate-bound elements and polycyclic aromatic hydrocarbons in an urban area. J Expo Sci Environ Epidemiol.
Liao, H.-T., Chou, C. C. K., Chow, J. C., Watson, J. G., Hopke, P. K., and Wu, C.-F. (2015). Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environmental Pollution, 205, 121-130.
Lin, L., Lee, M. L., and Eatough, D. J. (2010). Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment. J Air Waste Manag Assoc, 60(1), 3-25.
Masiol, M., Hofer, A., Squizzato, S., Piazza, R., Rampazzo, G., and Pavoni, B. (2012). Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. Atmospheric Environment, 60, 375-382.
May, A. A., Saleh, R., Hennigan, C. J., Donahue, N. M., and Robinson, A. L. (2012). Volatility of Organic Molecular Markers Used for Source Apportionment Analysis: Measurements and Implications for Atmospheric Lifetime. Environmental Science & Technology, 46(22), 12435-12444.
McPhee, D., Pin, A., Kizer, L., and Perelman, L. (2014). Deriving Renewable-Squalane from Sugarcane.
Mello, M. R., Gaglianone, P. C., Brassell, S. C., and Maxwell, J. R. (1988). Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and Petroleum Geology, 5(3), 205-223.
Miller, S. L., Anderson, M. J., Daly, E. P., and Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36(22), 3629-3641.
Nielsen, T. (1996). Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmospheric Environment, 30(20), 3481-3490.
Norris, G., and Duvall, R. (2014). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37(1), 23-35.
Paatero, P., and Hopke, P. K. (2003). Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490(1), 277-289.
Park, S. S., and Kim, Y. J. (2005). Source contributions to fine particulate matter in an urban atmosphere. Chemosphere, 59(2), 217-226.
Perera, F. P., Tang, D., Wang, S., Vishnevetsky, J., Zhang, B., Diaz, D., Camann, D., and Rauh, V. (2012). Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years. Environmental Health Perspectives, 120(6), 921-926.
Perrone, M. G., Carbone, C., Faedo, D., Ferrero, L., Maggioni, A., Sangiorgi, G., and Bolzacchini, E. (2014). Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmospheric Environment, 82, 391-400.
Pham, C. T., Kameda, T., Toriba, A., and Hayakawa, K. (2013). Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environmental Pollution, 183, 175-183.
Phuleria, H. C., Geller, M. D., Fine, P. M., and Sioutas, C. (2006). Size-Resolved Emissions of Organic Tracers from Light- and Heavy-Duty Vehicles Measured in a California Roadway Tunnel. Environmental Science & Technology, 40(13), 4109-4118.
Prince, R. C., Elmendorf, D. L., Lute, J. R., Hsu, C. S., Haith, C. E., Senius, J. D., Dechert, G. J., Douglas, G. S., and Butler, E. L. (1994). 17.alpha.(H)-21.beta.(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environmental Science & Technology, 28(1), 142-145.
Ren, L., Fu, P., He, Y., Hou, J., Chen, J., Pavuluri, C. M., Sun, Y., and Wang, Z. (2016). Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing. Scientific Reports, 6(1), 27481.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1991). Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science & Technology, 25(6), 1112-1125.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993a). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science & Technology, 27(4), 636-651.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993b). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science & Technology, 27(9), 1892-1904.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993c). Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environmental Science & Technology, 27(13), 2700-2711.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993d). Sources of fine organic aerosol. 5. Natural gas home appliances. Environmental Science & Technology, 27(13), 2736-2744.
Samet, J., and Krewski, D. (2007). Health effects associated with exposure to ambient air pollution. J Toxicol Environ Health A, 70(3-4), 227-242.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T. (1999). Measurement of Emissions from Air Pollution Sources. 2. C1 through C30 Organic Compounds from Medium Duty Diesel Trucks. Environmental Science & Technology, 33(10), 1578-1587.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T. (2002). Measurement of Emissions from Air Pollution Sources. 5. C1−C32 Organic Compounds from Gasoline-Powered Motor Vehicles. Environmental Science & Technology, 36(6), 1169-1180.
Shi, G. L., Liu, G. R., Tian, Y. Z., Zhou, X. Y., Peng, X., and Feng, Y. C. (2014). Chemical characteristic and toxicity assessment of particle associated PAHs for the short-term anthropogenic activity event: During the Chinese New Year''s Festival in 2013. Sci Total Environ, 482-483, 8-14.
Simoneit, B. R. T. (1985). Application of Molecular Marker Analysis to Vehicular Exhaust for Source Reconciliations. International Journal of Environmental Analytical Chemistry, 22(3-4), 203-232.
Simoneit, B. R. T. (1989). Organic matter of the troposphere — V: Application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. Journal of Atmospheric Chemistry, 8(3), 251-275.
Simoneit, B. R. T., Medeiros, P. M., and Didyk, B. M. (2005). Combustion Products of Plastics as Indicators for Refuse Burning in the Atmosphere. Environmental Science & Technology, 39(18), 6961-6970.
Sippula, O., Stengel, B., Sklorz, M., Streibel, T., Rabe, R., Orasche, J., Lintelmann, J., Michalke, B., Abbaszade, G., Radischat, C., Gröger, T., Schnelle-Kreis, J., Harndorf, H., and Zimmermann, R. (2014). Particle Emissions from a Marine Engine: Chemical Composition and Aromatic Emission Profiles under Various Operating Conditions. Environmental Science & Technology, 48(19), 11721-11729.
Summons, R. E., Powell, T. G., and Boreham, C. J. (1988). Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 52(7), 1747-1763.
Suzuki, K., and Yoshinaga, J. (2007). Inhalation and dietary exposure to polycyclic aromatic hydrocarbons and urinary 1-hydroxypyrene in non-smoking university students. Int Arch Occup Environ Health, 81(1), 115-121.
Swartz, E., Stockburger, L., and Vallero, D. A. (2003). Polycyclic aromatic hydrocarbons and other semivolatile organic compounds collected in New York City in response to the events of 9/11. Environ Sci Technol, 37(16), 3537-3546.
Thurston, G. D., and Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment (1967), 19(1), 9-25.
Tsai, P.-J., Shih, T.-S., Chen, H.-L., Lee, W.-J., Lai, C.-H., and Liou, S.-H. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 38(2), 333-343.
Vasconcellos, P. C., Souza, D. Z., Sanchez-Ccoyllo, O., Bustillos, J. O., Lee, H., Santos, F. C., Nascimento, K. H., Araujo, M. P., Saarnio, K., Teinila, K., and Hillamo, R. (2010). Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in Sao Paulo, Brazil. Sci Total Environ, 408(23), 5836-5844.
Viau, C., Diakité, A. s., Ruzgyté, A., Tuchweber, B., Blais, C., Bouchard, M., and Vyskocil, A. (2002). Is 1-hydroxypyrene a reliable bioindicator of measured dietary polycyclic aromatic hydrocarbon under normal conditions? Journal of Chromatography B, 778(1), 165-177.
Wang, Q., Feng, Y., Huang, X. H. H., Griffith, S. M., Zhang, T., Zhang, Q., Wu, D., and Yu, J. Z. (2016). Nonpolar organic compounds as PM2.5 source tracers: Investigation of their sources and degradation in the Pearl River Delta, China. Journal of Geophysical Research: Atmospheres, 121(19), 11,862-811,879.
Wang, Q., He, X., Huang, X. H. H., Griffith, S. M., Feng, Y., Zhang, T., Zhang, Q., Wu, D., and Yu, J. Z. (2017). Impact of Secondary Organic Aerosol Tracers on Tracer-Based Source Apportionment of Organic Carbon and PM2.5: A Case Study in the Pearl River Delta, China. ACS Earth and Space Chemistry, 1(9), 562-571.
Wang, Q. Q., Huang, X. H. H., Zhang, T., Zhang, Q., Feng, Y., Yuan, Z., Wu, D., Lau, A. K. H., and Yu, J. Z. (2015). Organic tracer-based source analysis of PM2.5 organic and elemental carbon: A case study at Dongguan in the Pearl River Delta, China. Atmospheric Environment, 118, 164-175.
Waterman, D., Horsfield, B., Leistner, F., Hall, K., and Smith, S. (2000). Quantification of Polycyclic Aromatic Hydrocarbons in the NIST Standard Reference Material (SRM1649A) Urban Dust Using Thermal Desorption GC/MS. Analytical Chemistry, 72(15), 3563-3567.
Watson, J. G. (2002). Visibility: science and regulation. J Air Waste Manag Assoc, 52(6), 628-713.
Watson, J. G., Fujita, E. M., Chow, J. C., Zielinska, B., Richards, L. W., Neff, W., and Dietrich, D. (1998). Northern front range air quality study final report. Prepared for Colorado State University, Fort Collins, CO, and EPRI, Palo Alto, CA, by Desert Research Institute, Reno, NV.
Watson, J. G., Robinson, N. F., Chow, J. C., Henry, R. C., Kim, B. M., Pace, T. G., Meyer, E. L., and Nguyen, Q. (1990). The USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environmental Software, 5(1), 38-49.
WHO. (2000). Air quality guildelines for Europe. 2nd edition.
WHO. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. Retrieved from https://www.who.int/phe/publications/air-pollution-global-assessment/en/
Wu, C., Ng, W. M., Huang, J., Wu, D., and Yu, J. Z. (2012). Determination of Elemental and Organic Carbon in PM2.5 in the Pearl River Delta Region: Inter-Instrument (Sunset vs. DRI Model 2001 Thermal/Optical Carbon Analyzer) and Inter-Protocol Comparisons (IMPROVE vs. ACE-Asia Protocol). Aerosol Science and Technology, 46(6), 610-621.
Wu, C. D., and Lung, S. C. (2012). Applying GIS and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts. J Expo Sci Environ Epidemiol, 22(2), 126-134.
Xia, Z., Duan, X., Tao, S., Qiu, W., Liu, D., Wang, Y., Wei, S., Wang, B., Jiang, Q., Lu, B., Song, Y., and Hu, X. (2013). Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ Pollut, 173, 150-156.
Xu, H., George, S. C., and Hou, D. (2019). Algal-derived polycyclic aromatic hydrocarbons in Paleogene lacustrine sediments from the Dongying Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 102, 402-425.
Xu, H. M., Tao, J., Ho, S. S. H., Ho, K. F., Cao, J. J., Li, N., Chow, J. C., Wang, G. H., Han, Y. M., Zhang, R. J., Watson, J. G., and Zhang, J. Q. (2013). Characteristics of fine particulate non-polar organic compounds in Guangzhou during the 16th Asian Games: Effectiveness of air pollution controls. Atmospheric Environment, 76, 94-101.
Yadav, S., Tandon, A., and Attri, A. K. (2013). Characterization of aerosol associated non-polar organic compounds using TD-GC-MS: A four year study from Delhi, India. Journal of Hazardous Materials, 252-253, 29-44.
Yang, T.-T., Hsu, C.-Y., Chen, Y.-C., Young, L.-H., Huang, C.-H., and Ku, C.-H. (2017). Characteristics, Sources, and Health Risks of Atmospheric PM2.5-Bound Polycyclic Aromatic Hydrocarbons in Hsinchu, Taiwan (Vol. 17).
Yu, J. Z., Huang, X. H. H., Ho, S. S. H., and Bian, Q. (2011). Nonpolar organic compounds in fine particles: quantification by thermal desorption–GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong. Analytical and Bioanalytical Chemistry, 401(10), 3125-3139.
Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., and Shao, M. (2008). Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environmental Science & Technology, 42(14), 5068-5073.
Zhang, Y., Tao, S., Cao, J., and Coveney, R. M. (2007). Emission of Polycyclic Aromatic Hydrocarbons in China by County. Environmental Science & Technology, 41(3), 683-687.
Zheng, M., Cass, G. R., Schauer, J. J., and Edgerton, E. S. (2002). Source Apportionment of PM2.5 in the Southeastern United States Using Solvent-Extractable Organic Compounds as Tracers. Environmental Science & Technology, 36(11), 2361-2371.
Zheng, M., Hagler, G. S. W., Ke, L., Bergin, M. H., Wang, F., Louie, P. K. K., Salmon, L., Sin, D. W. M., Yu, J. Z., and Schauer, J. J. (2006). Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong. Journal of Geophysical Research: Atmospheres, 111(D20).
Zielinska, B., Sagebiel, J., McDonald, J. D., Whitney, K., and Lawson, D. R. (2004). Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J Air Waste Manag Assoc, 54(9), 1138-1150.
吳欣育. (2018). 利用受體模式評估都會區細懸浮微粒上多環芳香烴濃度與來源貢獻垂直分布. 臺灣大學, Available from Airiti AiritiLibrary database. (2018年)
郭承彬, 馮立婷, 曹永杰, 張寶額, and 吳章甫. (2012). 應用絕對主成分分析於開徑式傅立葉轉換紅外光光譜儀監測資料以探討異味物質氨之排放污染源. [Application of APCA for Investigation of Odor Emission Sources of Ammonia with OP-FTIR Monitoring Data]. 勞工安全衛生研究季刊, 20(4), 499-511.
羅紹齊. (2014). 餐飲業細懸浮微粒排放與化學成份分析. 朝陽科技大學, Available from Airiti AiritiLibrary database. (2014年)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top