|
第一章 Ahn, K. H., H. Lee, H. D. Lee, S. C. Kim. 2020. Extensive evaluation and classification of low‐cost dust sensors in laboratory using a newly developed test method. Indoor air 30:137-146. doi. Austin, E., I. Novosselov, E. Seto, M. G. Yost. 2015. Laboratory evaluation of the shinyei ppd42ns low-cost particulate matter sensor. PLOS ONE 10:e0137789. doi: 10.1371/journal.pone.0137789. Badura, M., P. Batog, A. Drzeniecka-Osiadacz, P. Modzel. 2018. Optical particulate matter sensors in pm2.5 measurements in atmospheric air. E3S Web Conf. 44:00006. doi. Budde, M., T. Müller, B. Laquai, N. Streibl, A. Schwarz, G. Schindler, T. Riedel, M. Beigl, A. Dittler. 2018. Suitability of the low-cost sds011 particle sensor for urban pm-monitoring. Bulot, F. M. J., S. J. Johnston, P. J. Basford, N. H. C. Easton, M. Apetroaie-Cristea, G. L. Foster, A. K. R. Morris, S. J. Cox, M. Loxham. 2019. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci Rep-Uk 9. doi. Castell, N., F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, A. Bartonova. 2017. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International 99:293-302. doi: https://doi.org/10.1016/j.envint.2016.12.007. Chan, W.-H. 2012. Characterization of vibrating mesh aerosol generators. doi. Chen, B., R. A. Fletcher, Y. Cheng. 2011. Calibration of aerosol instruments, 449-478. Chien, C.-H., A. Theodore, C.-Y. Wu, Y.-M. Hsu, B. Birky. 2016. Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers. Journal of Aerosol Science 101:77-85. doi. Curto, A., D. Donaire-Gonzalez, J. Barrera-Gomez, J. D. Marshall, M. J. Nieuwenhuijsen, G. A. Wellenius, C. Tonne. 2018. Performance of low-cost monitors to assess household air pollution. Environ Res 163:53-63. doi: 10.1016/j.envres.2018.01.024. Đorđević, D., J. Đuričić-Milanković, A. Pantelić, S. Petrović, A. Gambaro. 2020. Coarse, fine and ultrafine particles of sub-urban continental aerosols measured using an 11-stage berner cascade impactor. Atmospheric Pollution Research 11:499-510. doi. Gao, Y., S. Lai, S.-C. Lee, P. S. Yau, Y. Huang, Y. Cheng, T. Wang, Z. Xu, C. Yuan, Y. Zhang. 2015. Optical properties of size-resolved particles at a hong kong urban site during winter. Atmospheric Research 155:1-12. doi. He, M., N. Kuerbanjiang, S. Dhaniyala. 2019. Performance characteristics of the low-cost plantower pms optical sensor. Aerosol Sci Tech:1-11. doi. Jayaratne, R., X. Liu, K.-H. Ahn, A. Asumadu-Sakyi, G. Fisher, J. Gao, A. Mabon, M. Mazaheri, B. Mullins, M. Nyaku. 2020. Low-cost pm2. 5 sensors: An assessment of their suitability for various applications. Aerosol Air Qual Res 20:520-532. doi. Jayaratne, R., X. Liu, P. Thai, M. Dunbabin, L. Morawska. 2018. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmospheric Measurement Techniques 11:4883-4890. doi. Kelly, K. E., J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, A. Butterfield. 2017. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ Pollut 221:491-500. doi. Kousaka, Y., K. Okuyama, M. Shimada, K. Ohshima, T. Hase. 1989. Performance of a nebulizer for standard aerosol particle generation. Earozoru Kenkyu 4:294-302. doi: 10.11203/jar.4.294. Kumar, P., A. N. Skouloudis, M. Bell, M. Viana, M. C. Carotta, G. Biskos, L. Morawska. 2016. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci Total Environ 560-561:150-159. doi: 10.1016/j.scitotenv.2016.04.032. Li, J. 2019. Recent advances in low-cost particulate matter sensor: Calibration and application. doi. Li, J. Y. and P. Biswas. 2017. Optical characterization studies of a low-cost particle sensor. Aerosol Air Qual Res 17:1691-1704. doi. Lin, Z., Z. Zhang, L. Zhang, J. Tao, R. Zhang, J. Cao, S. Fan, Y. Zhang. 2014. An alternative method for estimating hygroscopic growth factor of aerosol light-scattering coefficient: A case study in an urban area of guangzhou, south china. Atmospheric Chemistry & Physics 14. doi. Liu, B. Y. H. and K. W. Lee. 1975. An aerosol generator of high stability. American Industrial Hygiene Association Journal 36:861-865. doi: 10.1080/0002889758507357. Liu, B. Y. H. and D. Y. H. Pui. 1974. A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. Journal of Colloid and Interface Science 47:155-171. doi: https://doi.org/10.1016/0021-9797(74)90090-3. Lyamani, H., F. Olmo, L. Alados-Arboledas. 2008. Light scattering and absorption properties of aerosol particles in the urban environment of granada, spain. Atmospheric Environment 42:2630-2642. doi. Manikonda, A., N. Zíková, P. K. Hopke, A. R. Ferro. 2016. Laboratory assessment of low-cost pm monitors. Journal of Aerosol Science 102:29-40. doi: https://doi.org/10.1016/j.jaerosci.2016.08.010. Mercer, T. T. 1973a. Aerosol technology in hazard evaluation. United States: Academic Press, Inc. Mercer, T. T. 1973b. Production and characterization of aerosols. Archives of internal medicine 131:39-50. doi. Morawska, L., P. K. Thai, X. Liu, A. Asumadu-Sakyi, G. Ayoko, A. Bartonova, A. Bedini, F. Chai, B. Christensen, M. Dunbabin, J. Gao, G. S. W. Hagler, R. Jayaratne, P. Kumar, A. K. H. Lau, P. K. K. Louie, M. Mazaheri, Z. Ning, N. Motta, B. Mullins, M. M. Rahman, Z. Ristovski, M. Shafiei, D. Tjondronegoro, D. Westerdahl, R. Williams. 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ Int 116:286-299. doi: 10.1016/j.envint.2018.04.018. Mukherjee, A., L. G. Stanton, A. R. Graham, P. T. Roberts. 2017. Assessing the utility of low-cost particulate matter sensors over a 12-week period in the cuyama valley of california. Sensors-Basel 17. doi. OZLER, S. 2018. Field applications of low-cost air quality monitors for pm 2.5 studies. doi. Pawar, H. and B. Sinha. 2020. Humidity, density, and inlet aspiration efficiency correction improve accuracy of a low-cost sensor during field calibration at a suburban site in the north-western indo-gangetic plain (nw-igp). Aerosol Sci Tech. doi. Rai, A. C., P. Kumar, F. Pilla, A. N. Skouloudis, S. Di Sabatino, C. Ratti, A. Yasar, D. Rickerby. 2017. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci Total Environ 607-608:691-705. doi: 10.1016/j.scitotenv.2017.06.266. Sakhnini, N. 2018. Mycitymeter wearable: Measuring the environmental risk factors for cognitive impairment in older adults, in Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, 1793-1797. Sayahi, T., A. Butterfield, K. E. Kelly. 2018. Long-term field evaluation of the plantower pms low-cost particulate matter sensors. Environmental Pollution. doi: https://doi.org/10.1016/j.envpol.2018.11.065. Sayahi, T., A. Butterfield, K. E. Kelly. 2019. Long-term field evaluation of the plantower pms low-cost particulate matter sensors. Environ Pollut 245:932-940. doi. Schieweck, A., E. Uhde, T. Salthammer, L. C. Salthammer, L. Morawska, M. Mazaheri, P. Kumar. 2018. Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews 94:705-718. doi: https://doi.org/10.1016/j.rser.2018.05.057. Shanghai One-xin Electronics Technology Co., L. 2016. Digital universal particle concentration sensor. doi. Sousan, S., K. Koehler, G. Thomas, J. H. Park, M. Hillman, A. Halterman, T. M. Peters. 2016. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci Technol 50:462-473. doi: 10.1080/02786826.2016.1162901. Thomas, J. W. 1967. Particle loss in sampling conduits, in Assessment of Airborne Radioactivity. Proceedings of a Symposium on Instruments and Techniques for the Assessment of Airborne Radioactivity in Nuclear Operations. Tiele, A., S. Esfahani, J. Covington. 2018. Design and development of a low-cost, portable monitoring device for indoor environment quality. Journal of Sensors 2018:14. doi: 10.1155/2018/5353816. Tien, C. P., C. H. Chen, W. Y. Lin, C. S. Liu, K. J. Liu, M. Hsiao, Y. C. Chang, S. C. Hung. 2019. Ambient particulate matter attenuates sirtuini and augments srebp1-pir axis to induce human pulmonary fibroblast inflammation: Molecular mechanism of microenvironment associated with copd. Aging-Us 11:4654-4671. doi. Wang, K., F. E. Chen, W. Au, Z. Zhao, Z. L. Xia. 2018. Evaluating the feasibility of a personal particle exposure monitor in outdoor and indoor microenvironments in shanghai, china. International journal of environmental health research:1-12. doi: 10.1080/09603123.2018.1533531. Wang, Y., J. Li, H. Jing, Q. Zhang, J. Jiang, P. Biswas. 2015. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci Tech 49:1063-1077. doi. William, C. and Z. HINDS. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles: WILEY-BLACKWELL. Williams, R., A. Kaufman, T. Hanley, J. Rice, S. Garvey. 2014. Evaluation of field-deployed low cost pm sensors. US Environmental Protection Agency. doi. Xing, Y. F., Y. H. Xu, M. H. Shi, Y. X. Lian. 2016. The impact of pm2.5 on the human respiratory system. J Thorac Dis 8:E69-E74. doi. Zamora, M. L., F. L. Z. Xiong, D. Gentner, B. Kerkez, J. Kohrman-Glaser, K. Koehler. 2019. Field and laboratory evaluations of the low-cost plantower particulate matter sensor. Environ Sci Technol 53:838-849. doi. Zanobetti, A., M. Franklin, P. Koutrakis, J. Schwartz. 2009. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health-Glob 8. doi. Zanobetti, A. and J. Schwartz. 2006. Air pollution and emergency admissions in boston, ma. J Epidemiol Commun H 60:890-895. doi. Zimmerman, N., A. A. Presto, S. P. Kumar, J. Gu, A. Hauryliuk, E. S. Robinson, A. L. Robinson, R. Subramanian. 2018. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmospheric Measurement Techniques 11. doi. Zuidema, C., L. V. Stebounova, S. Sousan, G. Thomas, K. Koehler, T. M. Peters. 2019. Sources of error and variability in particulate matter sensor network measurements. Journal of occupational and environmental hygiene 16:564-574. doi.
第二章 Brouwer, D. H., J. H. Gijsbers, M. W. Lurvink. 2004. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. Annals of Occupational Hygiene 48:439-453. doi. Castell, N., F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, A. Bartonova. 2017. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment international 99:293-302. doi. Chakrabarti, B., P. M. Fine, R. Delfino, C. Sioutas. 2004. Performance evaluation of the active-flow personal dataram pm2. 5 mass monitor (thermo anderson pdr-1200) designed for continuous personal exposure measurements. Atmospheric Environment 38:3329-3340. doi. Chen, C.-C. and S.-H. Huang. 1999. Shift of aerosol penetration in respirable cyclone samplers. American Industrial Hygiene Association Journal 60:720-729. doi. Đorđević, D., J. Đuričić-Milanković, A. Pantelić, S. Petrović, A. Gambaro. 2020. Coarse, fine and ultrafine particles of sub-urban continental aerosols measured using an 11-stage berner cascade impactor. Atmospheric Pollution Research 11:499-510. doi. Fisher, J. A., M. C. Friesen, S. Kim, S. J. Locke, Y. Kefelegn, J. Y. Wong, P. S. Albert, R. R. Jones. 2019. Sources of variability in real-time monitoring data for fine particulate matter: Comparability of three wearable monitors in an urban setting. Environmental Science & Technology Letters 6:222-227. doi. Gao, Y., S. Lai, S.-C. Lee, P. S. Yau, Y. Huang, Y. Cheng, T. Wang, Z. Xu, C. Yuan, Y. Zhang. 2015. Optical properties of size-resolved particles at a hong kong urban site during winter. Atmospheric Research 155:1-12. doi. Hering, S. V. 1995. Impactors, cyclones, and other inertial and gravitational collectors. Air sampling instruments for evaluation of atmospheric contaminants 8:279-321. doi. Hinds, W. C., W.-C. V. Liu, J. R. FROINES. 1985. Particle bounce in a personal cascade impactor: A field evaluation. American Industrial Hygiene Association Journal 46:517-523. doi. Janssen, N. A., G. Hoek, B. Brunekreef, H. Harssema, I. Menswik, A. Zuidhof. 1998. Personal sampling of particles in adults: Relation among personal, indoor, and outdoor air concentrations. American journal of epidemiology 147:537-547. doi. Jayaratne, R., X. Liu, K.-H. Ahn, A. Asumadu-Sakyi, G. Fisher, J. Gao, A. Mabon, M. Mazaheri, B. Mullins, M. Nyaku. 2020. Low-cost pm2. 5 sensors: An assessment of their suitability for various applications. Aerosol and Air Quality Research 20:520-532. doi. Karlsson, H. L., J. Gustafsson, P. Cronholm, L. Möller. 2009. Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicology letters 188:112-118. doi. Lin, Z., Z. Zhang, L. Zhang, J. Tao, R. Zhang, J. Cao, S. Fan, Y. Zhang. 2014. An alternative method for estimating hygroscopic growth factor of aerosol light-scattering coefficient: A case study in an urban area of guangzhou, south china. Atmospheric Chemistry & Physics 14. doi. Liu, B. Y. H. and K. W. Lee. 1975. An aerosol generator of high stability. American Industrial Hygiene Association Journal 36:861-865. doi: 10.1080/0002889758507357. Liu, H.-Y., P. Schneider, R. Haugen, M. Vogt. 2019. Performance assessment of a low-cost pm2. 5 sensor for a near four-month period in oslo, norway. Atmosphere 10:41. doi. Lyamani, H., F. Olmo, L. Alados-Arboledas. 2008. Light scattering and absorption properties of aerosol particles in the urban environment of granada, spain. Atmospheric Environment 42:2630-2642. doi. Marple, V. A. and K. Willeke. 1976. Inertial impactors: Theory, design and use. Fine Particles: Aerosol Generation, Measurement, Sampling, and Analysis:412-446. doi. Pak, S. S., B. Y. Liu, K. L. Rubow. 1992. Effect of coating thickness on particle bounce in inertial impactors. Aerosol Science and Technology 16:141-150. doi. Price, H. D., B. Stahlmecke, R. Arthur, H. Kaminski, J. Lindermann, E. Däuber, C. Asbach, T. A. Kuhlbusch, K. A. Berube, T. P. Jones. 2014. Comparison of instruments for particle number size distribution measurements in air quality monitoring. Journal of Aerosol Science 76:48-55. doi. Rao, A. and K. Whitby. 1978. Non-ideal collection characteristics of inertial impactors—i. Single-stage impactors and solid particles. Journal of Aerosol Science 9:77-86. doi. Sousan, S., K. Koehler, G. Thomas, J. H. Park, M. Hillman, A. Halterman, T. M. Peters. 2016. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci Technol 50:462-473. doi: 10.1080/02786826.2016.1162901. Tsai, C.-J. and Y.-H. Cheng. 1995. Solid particle collection characteristics on impaction surfaces of different designs. Aerosol Science and Technology 23:96-106. doi. Ueberham, M. and U. Schlink. 2018. Wearable sensors for multifactorial personal exposure measurements–a ranking study. Environment international 121:130-138. doi. Wang, K., F. E. Chen, W. Au, Z. H. Zhao, Z. L. Xia. 2019. Evaluating the feasibility of a personal particle exposure monitor in outdoor and indoor microenvironments in shanghai, china. Int J Environ Heal R 29:209-220. doi. Wang, Y., J. Li, H. Jing, Q. Zhang, J. Jiang, P. Biswas. 2015. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci Tech 49:1063-1077. doi. Xing, Y. F., Y. H. Xu, M. H. Shi, Y. X. Lian. 2016. The impact of pm2.5 on the human respiratory system. J Thorac Dis 8:E69-E74. doi. Yao, M. and G. Mainelis. 2007. Analysis of portable impactor performance for enumeration of viable bioaerosols. Journal of occupational and environmental hygiene 4:514-524. doi. 鍾俊彬 and 蔡春進. 2000. 凹槽慣性衝擊器的理論研究.
|