跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳語謙
研究生(外文):Yu-Chien Chen
論文名稱:在小鼠模型中Semaphorin 6A 在抗癌免疫上的機制及作用
論文名稱(外文):To study semaphorin 6A regulated the anti-cancer immune response and its mechanism in mouse model
指導教授:李心予李心予引用關係
指導教授(外文):Hsinyu Lee
口試委員:蔡孟勳賴亮全
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:肺癌Semaphorin 6ASemaphorin 3ANeuropilin1毒殺型T細胞調節型T 細胞腫瘤浸潤淋巴細胞細胞性免疫抗癌免疫
外文關鍵詞:lung cancerSemaphorin 6ASemaphorin 3ANeuropilin1cytotoxic T cellsregulatory T cellsTumor-infiltrating lymphocytescellular immunityanti-cancer immunity
DOI:10.6342/NTU202000215
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全世界癌症死亡率不斷攀升,世界衛生組織WHO(World Health Organization)2018 年統計指出肺癌死亡率為所有癌症死亡率中最高。目前較常見肺癌治療方式有手術移除、放療、化療及標靶治療,雖然已有明顯提升肺癌存活率,但晚期肺癌存活率仍偏低為19%。近幾年癌症治療的方法中有一種新興的治療方式稱為免疫療法,免疫治療可以促進自身的免疫系統來攻擊腫瘤細胞藉此阻止癌症發展。為了使免疫治療可以發揮最佳效果,找出具有正向免疫調節性質且能夠對抗癌症的指標基因是很重要的。根據我們實驗室之前的研究,在肺癌組織中Semaphorin 6A (SEMA6A) 表現量較周邊正常組織低。而我們先前ex vivo 的研究中,SEMA6A 能夠降低調節型 T 細胞的增生能力,以及減輕SEMA3A 抑制毒殺型 T 細胞及自然殺手細胞毒殺能力的效果。因此推測SEMA6A 在癌症免疫中可能扮重要角色。因為已知SEMA3A 抑制T 細胞所使用的受體為Neuropilin1(NRP1)/PlexinA4(PLXNA4) 也是SEMA6A 的受體, 所以提出SEMA6A 可能是經由與SEMA3A 競爭NRP1/PLXNA4 ,而避免SEMA3A 的免疫抑制的假設。本篇研究目的是進一步以小鼠模型探討SEMA6A 的抗癌免疫功能以及與SEMA3A 在免疫的相互作用。首先,我們研究SEMA6A 及SEMA3A是否會競爭NPR1/PLNXA4 受體,並影響NRP1/PLNXA4 下游基因表現,結果顯示SEMA6A 會與SEMA3A 競爭NRP1 的結合且會抑制掉SEMA3A/NRP1 下游路徑,所以證實SEMA6A 應是經由與SEMA3A 競爭NRP1/PLNXA4 受體來避免肺癌細胞藉由SEMA3A 引發的免疫抑制。而小鼠模型實驗中,將不同處理之小鼠肺癌細胞KLN205,以皮下注射打進小鼠體內,4-5 周後犧牲測量腫瘤大小,並以流式細胞儀檢測免疫細胞對KLN205 細胞活性,結果表示SEMA6A 可有效的降低腫瘤的成長,在免疫細胞的調控方面SEMA6A 可以抑制SEMA3A 對毒殺性T 細胞的抑制作用,並且藉由抑制SEMA3A 來降低調節型T 細胞的增生,除此之外SEMA6A 也可減輕SEMA3A 減少腫瘤浸潤淋巴細胞比例的現象。統整以上結果,SEMA6A 可以透過競爭SEMA3A 的受體NRP1 來抑制SEMA3A/NRP1 的下游基因表現,進而抑制SEMA3A 的抑制免疫效果回復免疫細胞的增生、移動能力、抑制腫瘤的形成。
In 2018, 9.6 million people died because of cancer worldwide. Lung cancer is the leading cause of cancers death. Although some therapies have been used to treat lung cancer, the prognosis of patients remains poor. Thus, the therapy strategies of lung cancer have to be developed. Immunotherapy is a revolutionary cancer therapy that uses the natural capability of immune system to detect and destroy cancer cells. Therefore, discovering stimulators of immunity is an important task. Our previous study showed that the level of semaphorin (SEMA)-6A was lower in cancer tissues than in adjacent normal tissues. The results of our ex vivo study also showed that SEMA6A reduced the SEMA3A-led inhibition of anti-cancer activity of cytotoxic T (Tc) cells and natural killer (NK) cells and decreased the proliferation of regulatory T (Treg) cells. However, the mechanism of how SEMA6A reduces the effects of SEMA3A in immune cells is still unclear. In the study, I firstly investigated whether SEMA6A decreased SEMA3A-derived immunosuppression by disrupting the binding of SEMA3A between NRP1/PLNXA4, which is the co-receptor of both SEMA3A and SEMA6A and is used by SEMA3A to suppress T cells. Then, we further validated the ex vivo experiments of immunoregulatory of SEMA6A in mouse models. The results of competition assay revealed that the level of SEMA3A and NRP1 bindings was negatively correlated with the dose of SEMA6A. The results of GSEA also showed that SEMA6A lowered the SEMA3A/NRP1-derived pathways. In the in vivo trial, mice were injected with SEMA3A and KLN205KD cells with/without SEMA6A overexpression. After 4-5 weeks, the tumors were smaller in the mice injected with SEMA6A overexpressing KLN205KD cells. The splenocytes of mice were subsequently co-cultured with KLN205KD cells, and the immune effects of SEMA6A were evaluated by the proliferation of Tc, Th, and Treg cells. Moreover, the proportion of tumor-infiltrating lymphocytes (TILs), Tc and NK cells, were measured in tumor. The results indicated that SEMA3A reduced the proliferation of Tc and induced which of Treg. The TILs were also decreased by SEMA3A. Moreover, SEMA6A modulated the effects of SEMA3A in immune cells. Therefore, the in vivo study double confirmed the effects of SEMA6A on anti-cacner immunity. In conclusion, our results suggest that SEMA6A attenuates tumor formation, supresses the downstream gene expression of SEMA3A/NRP1, and further inhibits the immune effect of SEMA3A to restore the proliferation and migration ability of immune cells.
致謝 I
中文摘要 II
英文摘要 IV
第一章、文獻回顧 .................................................. 1
1-1 肺癌.................................................................................................................... 1
1-1-1 肺癌的介紹............................................................................................ 1
1-1-2 肺癌的致病機制及原因.............................................................................. 1
1-1-3 癌症動物模型.............................................................................................. 3
1-2 免疫治療(Immunotherapy) .............................................................................. 4
1-2-1 免疫細胞的種類以及作用.......................................................................... 4
1-2-2 癌症免疫治療的原理.................................................................................. 6
1-2-3 癌症免疫治療現今的主要應用及發展...................................................... 7
1-2-4 癌症免疫治療目前的困境及未來發展方向............................................12
1-3 Semaphorin 蛋白..............................................................................................13
1-3-1 Semaphorin 的介紹...................................................................................13
1-3-2 Semaphorins 所調控的訊息傳遞路徑......................................................13
1-3-3 Semaphorin 在癌症中的研究....................................................................14
1-3-4 Semaphorin 與免疫之間的關係...............................................................15
1-3-5 Semaphorin 與癌症免疫之間的關係........................................................16
1-3-6 Semaphorin6A ............................................................................................ 16
1-3-7 Semaphorin3A ............................................................................................ 17
第二章、研究動機與架構 ........................................... 19
第三章、實驗材料及方法 ........................................... 21
3-1 培養液配置(Medium preparation).................................................................21
3-2 細胞培養與繼代(Cell culture and subculture) ..............................................22
3-3 慢病毒包裝系統(Lentivirus packing system) ...............................................23
3-4 過渡性轉染(Transient transfection)...............................................................24
3-5 病毒感染(Cell infection)................................................................................26
3-6 分析RNA 表現(RNA)..................................................................................26
3-7 分析蛋白質表現(Western blot analysis) .......................................................28
3-9 蛋白質純化(Protein purification) ..................................................................30
3-10 小鼠品種及注射腫瘤細胞(Animal and Cancer Cell Injection)..................31
3-11 小鼠脾臟細胞製備(Preparation of mouse splenocytes)..............................31
3-12 免疫細胞增生分析(Proliferation assay)......................................................32
3-13 競爭實驗分析(Competition assay) ..............................................................33
3-14 腫瘤浸潤淋巴細胞分析(Tumor infiltrating lymphocytes analysis) .............33
3-15 基因集富集分析(Gene set enrichment analysis, GSEA) ..............................35
3-16 統計方法(Statistical analysis) ......................................................................36
第四章、實驗結果 ................................................. 37
4-1 探討SEMA6A 與SEMA3A 競爭共同受體NRP1 的狀況...........................37
4-2 探討SEMA6A 對SEMA3A/NRP1 下游基因表現量的影響........................37
4-3 分析SEMA6A 及SEMA3A 在KLN205 小鼠肺癌細胞株中的基因表現量..................................................................................................................................38
4-4 探討SEMA6A 及SEMA3A 在ICR 小鼠中對腫瘤形成的影響.................39
4-5 探討SEMA6A 及SEMA3A 在ICR 小鼠中對自然殺手細胞及整體T 細胞在腫瘤中浸潤的影響..........................................................................................39
4-6 探討SEMA6A 及SEMA3A 在ICR 小鼠中對全體T 淋巴細胞增生能力的影響......................................................................................................................40
4-7 探討SEMA6A 及SEMA3A 在ICR 小鼠中對毒殺型T 細胞增生能力的影響..........................................................................................................................40
4-8 探討SEMA6A 及SEMA3A 在DBA/2 小鼠中,對腫瘤形成的影響........41
4-9 探討SEMA6A 及SEMA3A 在DBA/2 小鼠中,對毒殺性T 細胞在腫瘤中浸潤的影響..........................................................................................................42
4-10 探討SEMA6A 及SEMA3A 在DBA/2 小鼠中對毒殺型T 細胞增生能力的影響......................................................................................................................42
4-11 探討SEMA6A 及SEMA3A 在DBA/2 小鼠中對調節性T 細胞增生能力的影響..................................................................................................................43
4-12 探討SEMA6A 及SEMA3A 在DBA/2 小鼠中對輔助型T 細胞增生能力的影響..................................................................................................................43
第五章、結論與討論 ............................................... 45
5-1 結論..................................................................................................................45
5-2 探討SEMA6A 與SEMA3A 競爭受體所影響下游路徑與免疫的關係....45
5-3 探討SEMA6A 在不同小鼠癌症模型上所造成的腫瘤大小及免疫反應...46
5-4 探討SEMA6A 誘導毒殺性T 細胞增生在小鼠模型上所引發的抗癌免疫作用......................................................................................................................48
5-5 探討SEMA6A 誘導調節型T 細胞增生在小鼠模型上所引發的抗癌免疫作用......................................................................................................................49
5-6 探討SEMA6A 誘導輔助型T 細胞增生在小鼠模型上所引發的抗癌免疫作用......................................................................................................................50
5-7 探討SEMA6A 誘導腫瘤浸潤淋巴細胞比例增加在小鼠模型上所引發的抗癌免疫作用..........................................................................................................51
第六章、未來的研究方向 ........................................... 53
參考文獻 ......................................................... 82
1.Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2.Siegel, R.L., K.D. Miller, and A.J.C.a.c.j.f.c. Jemal, Cancer statistics, 2019. 2019. 69(1): p. 7-34.
3.Shames, D.S. and Wistuba, II, The evolving genomic classification of lung cancer. J Pathol, 2014. 232(2): p. 121-33.
4.Furrukh, M., Tobacco Smoking and Lung Cancer: Perception-changing facts. Sultan Qaboos Univ Med J, 2013. 13(3): p. 345-58.
5.Zhong, L., et al., A case-control study of lung cancer and environmental tobacco smoke among nonsmoking women living in Shanghai, China. Cancer Causes Control, 1999. 10(6): p. 607-16.
6.Greillier, L., et al., Perception of Lung Cancer Risk: Impact of Smoking Status and Nicotine Dependence. Curr Oncol Rep, 2018. 20(Suppl 1): p. 18.
7.Thun, M.J., et al., Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med, 2008. 5(9): p. e185.
8.Li, M., X. Liu, and L. Zhang, The relationship of indoor coal use and environmental tobacco smoke exposure with lung cancer in China: A meta-analysis. J Cancer Res Ther, 2018. 14(Supplement): p. S7-S13.
9.Ko, Y.C., et al., Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol, 1997. 26(1): p. 24-31.
10.Shahadin, M.S., et al., Challenges and future direction of molecular research in air pollution-related lung cancers. Lung Cancer, 2018. 118: p. 69-75.
11.Cooper, W.A., et al., Molecular biology of lung cancer. J Thorac Dis, 2013. 5 Suppl 5: p. S479-90.
12.Del Re, M., et al., Implications of KRAS mutations in acquired resistance to treatment in NSCLC. Oncotarget, 2018. 9(5): p. 6630-6643.
13.Knobbe, C.B., J. Reifenberger, and G. Reifenberger, Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol, 2004. 108(6): p. 467-70.
14.Krypuy, M., et al., High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer, 2006. 6: p. 295.
15.Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500.
16.Jonas, A.M., The mouse in biomedical research. Physiologist, 1984. 27(5): p. 330-46.
17.Leclerc, M., et al., Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun, 2019. 10(1): p. 3345.
18.Andersen, M.H., et al., Cytotoxic T cells. J Invest Dermatol, 2006. 126(1): p. 32-41.
19.Wilson, N.J., et al., Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol, 2007. 8(9): p. 950-7.
20.Sharabi, A., et al., Regulatory T cells in the treatment of disease. Nat Rev Drug Discov, 2018. 17(11): p. 823-844.
21.Corthay, A., How do regulatory T cells work? Scand J Immunol, 2009. 70(4): p. 326-36.
22.Shevach, E.M., Biological functions of regulatory T cells, in Advances in immunology. 2011, Elsevier. p. 137-176.
23.Couzin-Frankel, J., Cancer immunotherapy. 2013, American Association for the Advancement of Science.
24.Kelly, P.N., The cancer immunotherapy revolution. 2018, American Association for the Advancement of Science.
25.Ott, P.A., F.S. Hodi, and C. Robert, CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res, 2013. 19(19): p. 5300-9.
26.Jazirehi, A.R., A. Lim, and T. Dinh, PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab. Am J Cancer Res, 2016. 6(10): p. 2117-2128.
27.Vacchelli, E., et al., Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology, 2014. 3(1): p. e27048.
28.Goncalves, A., et al., A polymorphism of EGFR extracellular domain is associated with progression free-survival in metastatic colorectal cancer patients receiving cetuximab-based treatment. BMC Cancer, 2008. 8: p. 169.
29.Restifo, N.P., M.E. Dudley, and S.A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol, 2012. 12(4): p. 269-81.
30.Andersen, R., et al., T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Ann Oncol, 2018. 29(7): p. 1575-1581.
31.Harrington, K.J., et al., Clinical development of talimogene laherparepvec (T-VEC): a modified herpes simplex virus type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther, 2015. 15(12): p. 1389-403.
32.Shen, J., et al., Anti-cancer therapy with TNFalpha and IFNgamma: A comprehensive review. Cell Prolif, 2018. 51(4): p. e12441.
33.Narita, M., et al., Generation of dendritic cells from leukaemia cells of a patient with acute promyelocytic leukaemia by culture with GM-CSF, IL-4 and TNF-alpha. Acta Haematol, 2001. 106(3): p. 89-94.
34.Oudard, S., Progress in emerging therapies for advanced prostate cancer. Cancer Treat Rev, 2013. 39(3): p. 275-89.
35.Xiao, Z., et al., Cytotoxic T lymphocytes and vaccine development 2013. Biomed Res Int, 2013. 2013: p. 865314.
36.Mimura, K., et al., [The effect of immune-based therapy with cytotoxic T lymphocyte and molecular targeting therapy for HER2 in esophageal squamous cell carcinoma]. Gan To Kagaku Ryoho, 2011. 38(12): p. 1918-20.
37.Dahlberg, C.I., et al., Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity. Front Immunol, 2015. 6: p. 605.
38.Taylor, A., D. Rothstein, and C.E. Rudd, Small-Molecule Inhibition of PD-1 Transcription Is an Effective Alternative to Antibody Blockade in Cancer Therapy. Cancer Res, 2018. 78(3): p. 706-717.
39.Raedler, L.A., Opdivo (Nivolumab): Second PD-1 Inhibitor Receives FDA Approval for Unresectable or Metastatic Melanoma. Am Health Drug Benefits, 2015. 8(Spec Feature): p. 180-3.
40.Kwok, G., et al., Pembrolizumab (Keytruda). Hum Vaccin Immunother, 2016. 12(11): p. 2777-2789.
41.Fellner, C., Ipilimumab (yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. P T, 2012. 37(9): p. 503-30.
42.Hodi, F.S., et al., Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med, 2010. 363(8): p. 711-23.
43.Sui, H., et al., Anti-PD-1/PD-L1 Therapy for Non-Small-Cell Lung Cancer: Toward Personalized Medicine and Combination Strategies. J Immunol Res, 2018. 2018: p. 6984948.
44.Koyama, S., et al., Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun, 2016. 7: p. 10501.
45.Koncina, E., et al., Role of semaphorins during axon growth and guidance, in Axon growth and guidance. 2007, Springer. p. 50-64.
46.Kolodkin, A.L., D.J. Matthes, and C.S. Goodman, The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell, 1993. 75(7): p. 1389-99.
47.Alto, L.T. and J.R. Terman, Semaphorins and their signaling mechanisms, in Semaphorin Signaling. 2017, Springer. p. 1-25.
48.Eickholt, B.J., Functional diversity and mechanisms of action of the semaphorins. 2008, The Company of Biologists Ltd.
49.Kruger, R.P., J. Aurandt, and K.L. Guan, Semaphorins command cells to move. Nat Rev Mol Cell Biol, 2005. 6(10): p. 789-800.
50.Guo, H.F. and C.W. Vander Kooi, Neuropilin Functions as an Essential Cell Surface Receptor. J Biol Chem, 2015. 290(49): p. 29120-6.
51.Geretti, E., A. Shimizu, and M. Klagsbrun, Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis, 2008. 11(1): p. 31-9.
52.Kong, Y., et al., Structural Basis for Plexin Activation and Regulation. Neuron, 2016. 91(3): p. 548-60.
53.Battistini, C. and L. Tamagnone, Transmembrane semaphorins, forward and reverse signaling: have a look both ways. Cell Mol Life Sci, 2016. 73(8): p. 1609-22.
54.Capparuccia, L. and L. Tamagnone, Semaphorin signaling in cancer cells and in cells of the tumor microenvironment--two sides of a coin. J Cell Sci, 2009. 122(Pt 11): p. 1723-36.
55.Casazza, A., et al., Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest, 2010. 120(8): p. 2684-98.
56.Loginov, V.I., et al., Tumor Suppressor Function of the SEMA3B Gene in Human Lung and Renal Cancers. PLoS One, 2015. 10(5): p. e0123369.
57.Yang, J., et al., Semaphorin 4C Promotes Macrophage Recruitment and Angiogenesis in Breast Cancer. Mol Cancer Res, 2019. 17(10): p. 2015-2028.
58.Lontos, K., et al., The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis. Front Endocrinol (Lausanne), 2018. 9: p. 322.
59.Xiao, J.B., et al., The association of semaphorin 5A with lymph node metastasis and adverse prognosis in cervical cancer. Cancer Cell Int, 2018. 18: p. 87.
60.Yamamoto, M., et al., Plexin-A4 negatively regulates T lymphocyte responses. Int Immunol, 2008. 20(3): p. 413-20.
61.Catalano, A., The neuroimmune semaphorin-3A reduces inflammation and progression of experimental autoimmune arthritis. J Immunol, 2010. 185(10): p. 6373-83.
62.Kumanogoh, A., et al., Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature, 2002. 419(6907): p. 629-33.
63.O''Connor, B.P., et al., Semaphorin 6D regulates the late phase of CD4+ T cell primary immune responses. Proc Natl Acad Sci U S A, 2008. 105(35): p. 13015-20.
64.Czopik, A.K., et al., Semaphorin 7A is a negative regulator of T cell responses. Immunity, 2006. 24(5): p. 591-600.
65.Delgoffe, G.M., et al., Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature, 2013. 501(7466): p. 252-6.
66.Evans, E.E., et al., Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res, 2015. 3(6): p. 689-701.
67.Casazza, A., et al., Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell, 2013. 24(6): p. 695-709.
68.Haklai-Topper, L., et al., Cis interaction between Semaphorin6A and Plexin-A4 modulates the repulsive response to Sema6A. EMBO J, 2010. 29(15): p. 2635-45.
69.Zhuang, B., Y.S. Su, and S. Sockanathan, FARP1 promotes the dendritic growth of spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling. Neuron, 2009. 61(3): p. 359-72.
70.Runker, A.E., et al., Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology. PLoS One, 2011. 6(11): p. e26488.
71.Bernard, F., et al., Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia, 2012. 60(10): p. 1590-604.
72.Zhao, J., et al., SEMA6A is a prognostic biomarker in glioblastoma. Tumour Biol, 2015. 36(11): p. 8333-40.
73.Shen, C.-Y., et al., Study the novel function of Semaphorin 6A in lung adenocarcinoma. 2010, AACR.
74.Cheng-Ying, S., et al., Semaphorin 6A inhibits the cell migration in lung adenocarcinoma cells. 2011, AACR.
75.Shen, C.Y., et al., The extracellular SEMA domain attenuates intracellular apoptotic signaling of semaphorin 6A in lung cancer cells. Oncogenesis, 2018. 7(12): p. 95.
76.Sharma, A., J. Verhaagen, and A.R. Harvey, Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci, 2012. 6: p. 28.
77.Schmidt, E.F. and S.M. Strittmatter, The CRMP family of proteins and their role in Sema3A signaling, in Semaphorins: Receptor and Intracellular Signaling Mechanisms. 2007, Springer. p. 1-11.
78.Luo, Y., D. Raible, and J.A. Raper, Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell, 1993. 75(2): p. 217-27.
79.Taniguchi, M., et al., Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron, 1997. 19(3): p. 519-30.
80.Fukuda, T., et al., Sema3A regulates bone-mass accrual through sensory innervations. Nature, 2013. 497(7450): p. 490-3.
81.Hu, Z.Q., et al., Overexpression of semaphorin 3A promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma after curative resection. Oncotarget, 2016. 7(32): p. 51733-51746.
82.Lepelletier, Y., et al., Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. Eur J Immunol, 2006. 36(7): p. 1782-93.
83.Zhou, Y., R.A. Gunput, and R.J. Pasterkamp, Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci, 2008. 33(4): p. 161-70.
84.Chen, L.H., et al., Semaphorin 6A Attenuates the Migration Capability of Lung Cancer Cells via the NRF2/HMOX1 Axis. Sci Rep, 2019. 9(1): p. 13302.
85.Takamatsu, H., T. Okuno, and A. Kumanogoh, Regulation of immune cell responses by semaphorins and their receptors. Cell Mol Immunol, 2010. 7(2): p. 83-8.
86.Roy, S., et al., Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol, 2017. 8: p. 1228.
87.Catalano, A., et al., Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood, 2006. 107(8): p. 3321-9.
88.Gentles, A.J., et al., The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med, 2015. 21(8): p. 938-945.
89.Gautier, G., et al., The class 6 semaphorin SEMA6A is induced by interferon-gamma and defines an activation status of langerhans cells observed in pathological situations. Am J Pathol, 2006. 168(2): p. 453-65.
90.Kim, J.H., et al., Small Heterodimer Partner Controls the Virus-Mediated Antiviral Immune Response by Targeting CREB-Binding Protein in the Nucleus. Cell Rep, 2019. 27(7): p. 2105-2118 e5.
91.Hemmerle, T., et al., The antibody-based targeted delivery of TNF in combination with doxorubicin eradicates sarcomas in mice and confers protective immunity. Br J Cancer, 2013. 109(5): p. 1206-13.
92.Huang, Z., et al., Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release, 2012. 158(2): p. 286-92.
93.Remark, R., et al., The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am J Respir Crit Care Med, 2015. 191(4): p. 377-90.
94.Ochsenbein, A.F., et al., Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature, 2001. 411(6841): p. 1058-64.
95.Yaron, A., et al., Differential requirement for Plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 Semaphorins. Neuron, 2005. 45(4): p. 513-23.
96.Sakaguchi, S., et al., Regulatory T cells: how do they suppress immune responses? Int Immunol, 2009. 21(10): p. 1105-11.
97.Takaku, S., et al., Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer, 2010. 126(7): p. 1666-74.
98.Wherry, E.J., T cell exhaustion. Nat Immunol, 2011. 12(6): p. 492-9.
99.Blank, C.U., et al., Defining ''T cell exhaustion''. Nat Rev Immunol, 2019. 19(11): p. 665-674.
100.Jung, K., et al., A Neuropilin-1 Antagonist Exerts Antitumor Immunity by Inhibiting the Suppressive Function of Intratumoral Regulatory T Cells. Cancer Immunol Res, 2020. 8(1): p. 46-56.
101.Meguri, Y., et al., Host Immune Status Determines the Effects of Therapeutic Interleukin-2 Administration: Enhancement of GVL or Induction of Tolerance? 2014, Am Soc Hematology.
102.Knutson, K.L. and M.L. Disis, Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother, 2005. 54(8): p. 721-8.
103.Wang, X., et al., PD-1-expressing B cells suppress CD4(+) and CD8(+) T cells via PD-1/PD-L1-dependent pathway. Mol Immunol, 2019. 109: p. 20-26.
104.Burkholder, B., et al., Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta, 2014. 1845(2): p. 182-201.
105.Hanahan, D. and L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012. 21(3): p. 309-22.
106.Villegas, F.R., et al., Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer, 2002. 35(1): p. 23-8.
107.Wendel, M., et al., Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res, 2008. 68(20): p. 8437-45.
108.Naik, A., et al., Neuropilin-1 promotes the oncogenic Tenascin-C/integrin beta3 pathway and modulates chemoresistance in breast cancer cells. BMC Cancer, 2018. 18(1): p. 533.
109.Nagy, N., et al., NRP1 Activates NF-à ºB Signaling Pathway and Initiates Proliferation in Keratinocytes. 2013: p. 1-5.
110.Skoda, A.M., et al., The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci, 2018. 18(1): p. 8-20.
111.Jia, Y., Y. Wang, and J. Xie, The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol, 2015. 89(2): p. 179-91.
112.Castorina, A., et al., Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer? Neural Regen Res, 2015. 10(6): p. 850-8.
113.Pandolfi, S., B.J.R. Stecca, and R.i. Biology, Hedgehog-Gli signaling in basal cell carcinoma and other skin cancers: prospects for therapy. 2015. 6: p. 55-71.
114.Jovanovic, V., et al., Implication of matrix metalloproteinase 7 and the noncanonical wingless-type signaling pathway in a model of kidney allograft tolerance induced by the administration of anti-donor class II antibodies. J Immunol, 2008. 180(3): p. 1317-25.
115.Schaller, M.D., Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci, 2010. 123(Pt 7): p. 1007-13.
116.Chatterjee, A., et al., Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Rep, 2014. 9(4): p. 1333-48.
117.Siesser, P.M. and S.K. Hanks, The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res, 2006. 12(11 Pt 1): p. 3233-7.
118.Gkouveris, I. and N.G.J.T.B. Nikitakis, Role of JNK signaling in oral cancer: A mini review. 2017. 39(6): p. 1010428317711659.
119.Zhou, Y.Y., et al., MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep, 2015. 35(3).
120.Dhanasekaran, D.N. and E.P. Reddy, JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer, 2017. 8(9-10): p. 682-694.
121.McCubrey, J.A., et al., GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014. 5(10): p. 2881-911.
122.Laukkanen, M.O. and M.D. Castellone, Hijacking the Hedgehog Pathway in Cancer Therapy. Anticancer Agents Med Chem, 2016. 16(3): p. 309-17.
123.Goshima, Y., et al., Regulation of dendritic development by semaphorin 3A through novel intracellular remote signaling. Cell Adh Migr, 2016. 10(6): p. 627-640.
124.Nasarre, P., R.M. Gemmill, and H.A. Drabkin, The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther, 2014. 7: p. 1663-87.
125.Venkova, K., et al., Semaphorin 3A signaling through neuropilin-1 is an early trigger for distal axonopathy in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 2014. 73(7): p. 702-13.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊