跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:3cde:41ad:c1c4:8dfe) 您好!臺灣時間:2024/12/07 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王序閔
研究生(外文):Shiu-Min Wang
論文名稱:大學棒球投手於重複性投擲模擬比賽後對身體質心與關節控制之影響
論文名稱(外文):The Effects of a Simulated Game with Repetitive Pitching on the Control of the Center of Mass and Joints in Collegiate Baseball Pitchers
指導教授:徐瑋勵徐瑋勵引用關係
指導教授(外文):Wei-Li Hsu
口試委員:林華韋林居正楊文傑吳育任
口試委員(外文):Hua-Wei LinJiu-Jenq LinWen-Chieh YangYuh-Renn Wu
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:44
中文關鍵詞:棒球投手疲勞身體質心偏移量身體質心變異量關節角度關節力矩
外文關鍵詞:baseball pitchingmuscle fatiguecenter of mass displacementcenter of mass variabilityjoint anglesjoint moments
DOI:10.6342/NTU202003575
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:疲勞累積會造成關節運動學之改變,進而影響身體質心的控制,例如:足球選手以及跑者;這些研究發現質心之變異量增加時,會影響運動員的表現而導致運動傷害增加。研究已顯示質心之變異量和運動平衡表現相關。然而,鮮少研究探討針對大學棒球選手於疲勞後身體質心之變化。
研究目的:探討經過一場模擬比賽後,大學棒球投手於身體質心及關節控制上的變化。
研究設計:橫斷性研究
研究方法:本研究受測者為全國大專院校棒球運動聯賽甲組或乙組之男性健康棒球投手,使用室內實驗室之三維動作分析系統擷取投球動作過程,分析其身體質心偏移量、關節角度、關節力矩。每位參與實驗之選手,需盡全力投出快速直球共80球,分4局每一局20球完成。投球過程中亦收集選手投球臂及跨步腳之肌電訊號、好壞球以及球速,並於每一局結束紀錄球員的自覺用力係數。統計方法為使用無母數分析之Wilcoxon符號等級(signed-rank)檢定,比較80球中之前3球數值的平均值(模擬比賽前),以及最後3球數值的平均值(模擬比賽後)。
研究結果:於模擬比賽後,身體質心顯著地朝向前方及下方偏移 (p< 0.05),且身體質心變異量於前後、左右以及上下的方向皆有顯著地增加 (p< 0.05)。髖關節屈曲角度以及膝關節屈曲角度也有顯著地增加 (p< 0.05)。自覺用力係數於第4局 (平均值= 15.7±2.36) 相比於第1局 (平均值= 11.91±2.19) 也有顯著地上升 (p< 0.01, z= -3.65)。
結論:此研究結果顯示大學棒球投手於重複性投擲模擬比賽後,會透過改變身體質心控制及關節協調以維持良好的投球表現。因此,不可以球速和精準度降低作為疲勞指標;因在球速及精準度改變之前,已產生質心及關節控制上的改變,應當偵測這些代償方式以預防疲勞所產生的運動傷害。
Background: Fatigue accumulation can alter the joint angles and then led to changes in the variability of the center of mass (CoM) considered an important parameter related to the stability of performance. However, none of these studies has examined the CoM variability during pitching in baseball players.
Objective: To determine the effects of a simulated game on the control of the center of mass and joints in collegiate baseball pitchers.
Design: Cross-sectional study
Methods: A total of 23 college baseball pitchers were recruited from the University Baseball League. The simulated game consists of 4 innings, each inning included 20 pitches (total 80 repetitive pitches). A motion analysis system was used to evaluate the CoM displacement, and joint angles and moments. Muscle fatigue level was assessed by the rating of perceived exertion (RPE) and median frequency analysis from the surface electromyography (EMG) on the pitching arm and stride leg. Pitching performances included pitching velocity and accuracy were also recorded. Wilcoxon signed-rank test was used to compare the mean value of CoM displacement, joint angles,joint moments, CoM variability, the median frequency of EMG, and RPE, and pitching performances between before and after a simulated game.
Results: After a simulated game, CoM displacement was significantly shifted forward and downward (p< 0.05), while CoM variability was significantly increased in all directions (p< 0.05). Moreover, the knee flexion and hip flexion angles were also increased significantly (p< 0.05). The RPE increased significantly (p< 0.01, z= -3.65) from 1st inning (mean= 11.91±2.19) to 4th inning (mean= 15.7±2.36).
Conclusion: After a simulated game with repetitive pitching, the baseball pitchers might alter the control of CoM and joint coordination to maintain their pitching performances. Thus, the reduction of pitching speed or pitching accuracy cannot be used as the only indicator for fatigue state since the changes in the control of CoM and joints already occurred before the changes of speed and accuracy. The compensatory strategies should be monitored to prevent sports injuries in baseball pitchers.
論文口試委員審定書 i
謝辭 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
INDEX OF FIGURE ix
INDEX OF TABLE x
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 Pain and injury in baseball pitching 3
2.2 Fatigue 3
2.2.1 Fatigue categorize 3
2.2.2 Fatigue in baseball 4
2.2.3 Detection of muscle fatigue 5
2.2.4 Fatigue-related with movement and performance 6
2.3 The importance of CoM kinematics in sports 7
2.4 Research question 8
2.5 Study objective 9
2.6 Hypothesis 10
CHAPTER 3 METHODOLOGY 11
3.1 Study design 11
3.2 Study procedure 12
3.3 Participants 13
3.4 Data collection and data analysis 14
3.4.1 Experimental setup 14
3.4.2 Pitching kinematics and kinetics 14
3.4.3 Muscle fatigue level 15
3.4.4 Pitching performances 17
3.5 Statistical analysis 18
CHAPTER 4 RESULTS 19
4.1 Demographic data 19
4.2 CoM displacement and joint angles 20
4.3 Joint moments 23
4.4 CoM variability 23
4.5 EMG and RPE 23
4.6 Pitching velocity and accuracy 23
CHAPTER 5 DISCUSSION 24
5.1 Control of CoM and multi-joint coordination 24
5.2 Stability of pitching movement 25
5.3 Level of muscle fatigue 26
5.4 Performances of pitching movement 26
Study limitations 27
CHAPTER 6 CONCLUSION 28
REFERENCES 29
APPENDIX 1. Clinical Trial/ Research Approval 44
1. Birfer, R., Sonne, M. W., et al. 2019. Manifestations of muscle fatigue in baseball pitchers: A systematic review. PeerJ 7, e7390
2. Makhni, E. C., Morrow, Z. S., et al. 2015. Arm pain in youth baseball players: A survey of healthy players. Am J Sports Med 43(1), 41-46
3. Grantham, W. J., Byram, I. R., et al. 2014. The impact of fatigue on the kinematics of collegiate baseball pitchers. Orthop J Sports Med. 2(6), 2325967114537032
4. Fortenbaugh, D., Fleisig, G. S., et al. 2009. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health 1(4), 314-320
5. Whiteley, R. 2007. Baseball throwing mechanics as they relate to pathology and performance - A review. J Sport Sci Med 6(1), 1-20
6. Whiteside, D., Martini, D. N., et al. 2016. Changes in a starting pitcher's performance characteristics across the duration of a major league baseball game. Int J Sports Physiol Perform 11(2), 247-254
7. Hsu, W. L. 2014. Adaptive postural control for joint immobilization during multitask performance. PLoS One 9(10), e108667
8. Hsu, W. L., Chou, L. S., et al. 2013. Age-related changes in joint coordination during balance recovery. Age (Dordr) 35(4), 1299-1309
9. Fernandes, R. J., Ribeiro, J., et al. 2012. Kinematics of the hip and body center of mass in front crawl. J Hum Kinet 33, 15-23
10. Wagner, H., Pfusterschmied, J., et al. 2011. Performance and kinematics of various throwing techniques in team-handball. J Sport Sci Med 10(1), 73-80
11. Sasaki, S., Nagano, Y., et al. 2015. The relationships between the center of mass position and the trunk, hip, and knee kinematics in the sagittal plane: A pilot study on field-based video analysis for female soccer players. J Hum Kinet 45, 71-80
12. McKinon, W., Hartford, C., et al. 2004. The agreement between reaction-board measurements and kinematic estimation of adult male human whole body centre of mass location during running. Physiol Meas 25(6), 1339-1354
13. Schutte, K. H., Maas, E. A., et al. 2015. Wireless tri-axial trunk accelerometry detects deviations in dynamic center of mass motion due to running-induced fatigue. PLoS One 10(10), e0141957
14. Evans, S., Winter, S. 2018. Effects of fatigue on center-of-mass acceleration during a prolonged overground run. J Phys Ther Sports Med 02(01)
15. Slawinski, J. P., Louis, J., et al. 2018. The effects of repeated sprints on the kinematics of 3-point shooting in basketball. J Hum Kinet 62, 5-14
16. Lin, S. P., Sung, W. H., et al. 2014. Impact of center-of-mass acceleration on the performance of ultramarathon runners. J Hum Kinet 44, 41-52
17. Tesio, L., Rota, V. 2019. The motion of body center of mass during walking: A review oriented to clinical applications. Front Neurol 10, 999
18. Werner, S. L., Gill, T. J., et al. 2001. Relationships between throwing mechanics and shoulder distraction in professional baseball pitchers. Am J Sport Med 29(3), 354-358
19. Fleisig, G., Chu, Y., et al. 2009. Variability in baseball pitching biomechanics among various levels of competition. Sports Biomech 8(1), 10-21
20. Chalmers, P. N., Wimmer, M. A., et al. 2017. The relationship between pitching mechanics and injury: A review of current concepts. Sports Health 9(3), 216-221
21. Erickson, B. J., Sgori, T., et al. 2016. The impact of fatigue on baseball pitching mechanics in adolescent male pitchers. Arthroscopy 32(5), 762-771
22. Olsen, S. J., 2nd, Fleisig, G. S., et al. 2006. Risk factors for shoulder and elbow injuries in adolescent baseball pitchers. Am J Sports Med 34(6), 905-912
23. Okoroha, K. R., Meldau, J. E., et al. 2018. Effect of fatigue on medial elbow torque in baseball pitchers: A simulated game analysis. Am J Sports Med 46(10), 2509-2513
24. Theofilidis, G., Bogdanis, G. C., et al. 2018. Monitoring exercise-induced muscle fatigue and adaptations: Making sense of popular or emerging indices and biomarkers. Sports (Basel) 6(4), 153
25. Pajoutan, M., Ghesmaty Sangachin, M., et al. 2017. Central and peripheral fatigue development in the shoulder muscle with obesity during an isometric endurance task. BMC Musculoskelet Disord 18(1), 314
26. Kent-Braun, J. A., Fitts, R. H., et al. 2012. Skeletal muscle fatigue. Compr Physiol 2(2), 997-1044
27. Hureau, T. J., Ducrocq, G. P., et al. 2016. Peripheral and central fatigue development during all-out repeated cycling sprints. Med Sci Sports Exerc 48(3), 391-401
28. Fazarale, J. J., Magnussen, R. A., et al. 2012. Knowledge of and compliance with pitch count recommendations: A survey of youth baseball coaches. Sports Health 4(3), 202-204
29. Crotin, R. L., Bhan, S., et al. 2013. Fastball velocity trends in short-season minor league baseball. J Strength Cond Res 27(8), 2206-2212
30. Freeston, J., Adams, R., et al. 2014. Indicators of throwing arm fatigue in elite adolescent male baseball players: A randomized crossover trial. J Strength Cond Res 28(8), 2115-2120
31. Oliver, G. D., Weimar, W. H. 2015. Hip range of motion and scapula position in youth baseball pitching pre and post simulated game. J Sports Sci 33(14), 1447-1453
32. Oliver G. D., Weimar W. H., et al. 2016. Effects of a simulated game on muscle activation in youth baseball pitchers. J Strength Cond Res 30(2), 415-420
33. Oliver, G. D., Plummer, H., et al. 2019. Effects of a simulated game on upper extremity pitching mechanics and muscle activations among various pitch types in youth baseball pitchers. J. Pediatr. Orthop. 39(8), 387-393
34. Chou, P. H., Huang, Y. P., et al. 2015. Change in pitching biomechanics in the late-inning in taiwanese high school baseball pitchers. J Strength Cond Res 29(6), 1500-1508
35. Escamilla, R. F., Barrentine, S. W., et al. 2007. Pitching biomechanics as a pitcher approaches muscular fatigue during a simulated baseball game. Am J Sports Med 35(1), 23-33
36. Slimani, M., Davis, P., et al. 2017. Rating of perceived exertion for quantification of training and combat loads during combat sport-specific activities: A short review. J Strength Cond Res 31(10), 2889-2902
37. Scantlebury, S., Till, K., et al. 2018. Validity of retrospective session rating of perceived exertion to quantify training load in youth athletes. J Strength Cond Res 32(7), 1975-1980
38. Mullaney, M. J., McHugh, M. P., et al. 2005. Upper and lower extremity muscle fatigue after a baseball pitching performance. Am J Sports Med 33(1), 108-113
39. Murray, T. A., Cook, T. D., et al. 2001. The effects of extended play on professional baseball pitchers. Am J Sports Med 29(2), 137-142
40. Gutierrez-Farewik, E. M., Bartonek, A., et al. 2006. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait. Hum Mov Sci 25(2), 238-256
41. Mapelli, A., Zago, M., et al. 2014. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture 39(1), 460-465
42. Kainz, H., Graham, D., et al. 2017. Reliability of four models for clinical gait analysis. Gait Posture 54, 325-331
43. Lin, C. L., Huang, C. F. 2011. The kinematic difference of baseball flat pitching and mound pitching. Physical Education Journal 44(4), 2011, 511-524
44. Seroyer, S. T., Nho, S. J., et al. 2010. The kinetic chain in overhand pitching: Its potential role for performance enhancement and injury prevention. Sports Health 2(2), 135-146
45. Zanca, G. G., Gruninger, B., et al. 2016. Effects of kinesio taping on scapular kinematics of overhead athletes following muscle fatigue. J Electromyogr Kinesiol 29, 113-120
46. Tsuboi, H., Nishimura, Y., et al. 2018. Properties of paraspinal muscles in japanese high school baseball players with terminal-stage lumbar spondylolysis. PM R 10(2), 175-182
47. Post, E. G., Laudner, K. G., et al. 2015. Correlation of shoulder and elbow kinetics with ball velocity in collegiate baseball pitchers. J Athl Train 50(6), 629-633
48. Hurd, W. J., Jazayeri, R., et al. 2012. Pitch velocity is a predictor of medial elbow distraction forces in the uninjured high school-aged baseball pitcher. Sports Health 4(5), 415-418
49. Stodden, D. F., Fleisig, G. S., et al. 2005. Relationship of biomechanical factors to baseball pitching velocity: Within pitcher variation. J Appl Biomech 21(1), 44-56
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊