跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 03:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃聖丰
研究生(外文):Sheng-Feng Huang
論文名稱:以固態接觸式離子選擇電極陣列試片應用於葉菜汁液離子組成分析
論文名稱(外文):Application of a Solid-contact Ion-selective Electrode Array on Ion Composition Analysis of Vegetable Leaf Juice
指導教授:陳林祈
指導教授(外文):Lin-Chi Chen
口試委員:方煒陳世芳鄭宗記郭鴻裕
口試委員(外文):Wei FangShih-Fang ChenTzong-Jih ChengHung-Yu Kuo
口試日期:2020-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:電子舌固態式離子選擇電極主成份分析圖譜辨識蔬菜營養素分析
外文關鍵詞:solid-contact ion-selective electrode (SCISE)electronic tonguepattern recognitionprinciple component analysis (PCA)vegetable nutrient analysis
DOI:10.6342/NTU202002110
相關次數:
  • 被引用被引用:2
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
智慧農業應用物聯網的概念及技術,在農場中導入感測技術收集農場的數據,並透過與大數據分析及人工智慧技術的整合,提供農民更有效率的農場經營管理模式。為了收集蔬菜的營養素數據並將其轉化為對農民作物生長管理上有用的資訊的,本研究開發以固態式離子選擇電極陣列試片 (solid-contact ion-selective electrode array chip, SCISE array chip)為基礎,搭配可攜式的多通道電位感測模組感知蔬菜葉片汁液中離子的訊號,並將其發展成電子舌 (electronic tongue)透過對收集到的離子訊號資料進行圖譜辨識,識別不同的蔬菜樣本。SCISE為以導電高分子作為固態接觸層輔助離子電子轉換的全固態式離子選擇電極。藉由此一導電高分子固態接觸層,SCISE擁有更快的響應時間及更高的電位穩定性。本研究開發的感測陣列試片包含了鉀 (靈敏度為51.9 mV/decade)、 鈉 (64.2 mV/decade)、 銨 (59.3 mV/decade)、 鈣 (45.6 mV/decade)以及鎂 (33.6 mV/decade)離子的選擇電極以及一固態參考電極。為了測試其應用,本研究以開發好的電子舌感知七種不同種類的蔬菜葉片汁液中的離子訊號 (濃度範圍:10-3〜10-4 M),並將結果與離子色譜法進行比較。結果顯示電子舌能夠獲取每種蔬菜汁獨特並且可被識別的離子組成圖譜,暗示其圖譜辨識應用的可行性。而進一步的研究成果顯示,透過主成份分析 (PCA)和K-均值集群分析離子濃度的感測資料,可以成功識別不同耕種條件下 (正常條件、缺乏氮以及鉀元素)生長的蔬菜。綜合以上,此研究展示一基於固態式離子選擇電極陣列的電子舌,具有模組化便於攜帶、快速且直接的量測以及量測範圍廣等優點,除了識別不同的蔬菜樣本亦可同時提供蔬菜樣本營養素含量的診斷。
Smart agriculture applies the concept and technology of internet of things (IoT) by introducing sensing technology to collect data from the farm; moreover, through combination with big data analysis and artificial intelligence, it provides farmers a more efficiency way to manage the farm. To collect the nutrient data of vegetables and transform it into meaningful information for farmers to manage the growth of crops, this study developed an electronic tongue based on a solid-contact ion-selective electrode (SCISE) array chip combined with a portable multi-channel potentiometric model for on-site analysis of vegetable samples. SCISEs are all-solid-state ion-selective electrodes with a conducting polymer for ion-to-electron transduction. With the conducting polymer solid-contact, the electrodes have faster response time and higher stability during potentiometric sensing. The developed SCISE array chip consists of potassium (SEN=51.9 mV/decade), sodium (64.2 mV/decade), ammonium (59.3 mV/decade), calcium (45.6 mV/decade), and magnesium (33.6 mV/decade) selective electrodes. To prove the application, seven types of fresh crude vegetable leaf juices (concentration range: 10-3~10-4M) were measured with the electronic tongue, and the result was compared with ion chromatography. It was found that the electronic tongue was able to obtain the unique, differentiable ion composition profile (a radar plot) of each vegetable juice, implying the fingerprint application of the present technology. Furthermore, using the electronic tongue and analyzing the multiplex ion concentration data by principle component analysis (PCA) method and K-means clustering, lettuces grown in different environments (deficiency in potassium and nitrate) are able to be discriminated. In summary, we demonstrate an electronic tongue based on SCISE array chip having the advantages of modulation, portable, fast and direct measurement, and have a board sensing range and emerging as a powerful tool for rapid ion composition profiling.
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 作物營養素與生理 5
2.2 電子舌 7
2.2.1 電子舌的發展與應用 7
2.2.2 圖譜辨識 10
2.2.3 感測陣列 11
2.2.4 基於離子選擇電極之電子舌技術回顧 12
2.3 固態接觸式離子選擇電極 15
2.3.1 固態接觸式離子選擇電極技術發展回顧 16
2.3.2 感測原理 18
2.3.3 離子選擇電極的選擇性 20
2.3.4 離子電子傳導層 21
2.3.5 固態參考電極 22
第三章 研究方法 23
3.1 實驗材料與儀器 23
3.1.1 實驗材料 23
3.1.2 實驗儀器 24
3.1.3 實驗軟體 24
3.2 電子舌系統開發 25
3.2.1 感測陣列試片製備 25
3.2.2 多通道電位感測模組之建置 29
3.2.3 圖譜辨識法 31
3.3 感測陣列試片性能分析 32
3.4 離子訊號之量化 32
3.4.1 三點校正法換算濃度 32
3.4.2 電位響應分數 33
3.5 離子色譜層析分析 33
3.6 蔬菜葉片汁液樣本製備 34
第四章 結果與討論 35
4.1 多通道電位感測模組 35
4.1.1 模組系統架構 36
4.1.2 模組系統功能比對 38
4.2 感測陣列試片性能評估 40
4.2.1 固態式離子選擇電極之電位穩定性分析 40
4.2.2 固態式離子選擇電極之靈敏度與選擇性分析 41
4.2.3 固態參考電極 45
4.2.4 小結 46
4.3 感測資料數據處理與圖譜辨識 47
4.3.1 感測陣列試片感知蔬菜樣本之離子訊號 48
4.3.2 離子組成圖譜的輪廓分析 54
4.3.3 離子組成圖譜辨識 58
4.3.4 小結 63
4.4 應用電子舌識別不同生長條件的蔬菜葉片汁液 64
4.4.1 皺葉萵苣樣本製備與觀察 64
4.4.2 依感測陣列電位響應繪製圖譜 67
4.4.3 離子組成圖譜辨識 69
4.4.4 小結 71
第五章 結論與未來展望 72
5.1 系統規格與使用方法 72
5.2 總結 73
5.3 未來展望與建議 73
參考文獻 74
附錄 78
附一、感測陣列試片電位穩定性分析 78
附二、固態參考電極 79
附三、感測陣列試片搭配固態參考電極 80
附四、電位響應繪製離子組成圖譜的輪廓雷達圖 83
陳駿季、楊智凱。2017。推動智慧農業-翻轉臺灣農業。國土及公共治理季刊。5卷4期,104 - 111
張庚鵬、張愛華。1997。蔬菜作物營養障礙診斷圖鑑。台中:行政院農業委員會農業試驗所。網址:https://web.tari.gov.tw/techcd/蔬菜/營養診斷/障礙診斷圖鑑.html。上網日期:109年5月。
姚傑文。2013。平面式離子選擇電極研究與水耕養液元素感測應用。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
張家豪。2015。全固態式陰離子選擇電極製備與養液元素感測應用之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
張哲綸。2015。以普魯士藍薄膜作為固態式離子選擇電極之離子電子傳導層。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
陳志豪。2015。以共聚物Pluronic F127修飾網版印刷式鈉離子選擇電極之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
陳裕夫。2017。透過調控聚苯胺傳導層之疏水性提升固態離子選擇電極感測性能。 碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
顏敬容。2017。固態離子選擇電極陣列試片製程及其應用於水耕栽培中營養離子感測之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
潘慶育。2017。基於離子選擇電極之可攜式水耕巨量營養素感測系統。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
呂奇翰。2018。調控聚(3,4-乙烯二氧噻吩)傳導層電鍍製程以提升固態式離子選擇電極長時間電位穩定性。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
吳伊敏。2018。探討聚氯乙烯/氯化鉀薄膜製程對固態銀/氯化銀參考電極電位穩定性之影響。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
何禮丞。2019。以聚(3,4-乙烯二氧噻吩)修飾黃金電極製備固態pH與碳酸根離子感測試片之研究。碩論。台北:國立臺灣大學生物產業機電工程學系研究所。
Buck, & Cosofret. (1993). Recommended procedures for calibration of ion-selective electrodes. Pure and Appl. Chem. 65(8), 1849-1858.
Ciosek, Augustyniak, & Wróblewski. (2004). Polymeric membrane ion-selective and cross-sensitive electrode-based electronic tongue for qualitative analysis of beverages. Analyst, 129(7), 639-644.
Ciosek, Zawadzki, Łopacińska, Skolimowski, Bembnowicz, Golonka, Wróblewski. (2009). Monitoring of cell cultures with LTCC microelectrode array. Analytical and Bioanalytical Chemistry, 393(8), 2029-2038.
Ciosek & Wróblewski. (2007). Sensor Arrays for Liquid Sensing-electronic Tongue Systems. The Analyst, 132, 963-978.
Ciosek, Zawadzki, Stadnik, Bembnowicz, Golonka, & Wróblewski (2009). Microelectrode array fabricated in low temperature cofired ceramic (LTCC) technology. Journal of Solid State Electrochemistry, 13(1), 129-135.
Evtugyn, Belyakova, Shamagsumova, Saveliev, Ivanov, Stoikova, Budnikov (2010). Discrimination of apple juice and herbal liqueur brands with solid-state electrodes covered with polyaniline and thiacalixarenes. Talanta, 82(2), 613-619.
Gallardo, Alegret, Muñoz, De-Román, Leija, Hernández, & del Valle (2003). An electronic tongue using potentiometric all-solid-state PVC-membrane sensors for the simultaneous quantification of ammonium and potassium ions in water. Analytical and Bioanalytical Chemistry, 377(2), 248-256.
Gao, Emaminejad, Nyein, Challa, Chen, Peck, Javey (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529, 509.
Gutiérrez, Alegret, Cáceres, Casadesús, Marfà, & del Valle (2008). Nutrient Solution Monitoring in Greenhouse Cultivation Employing a Potentiometric Electronic Tongue. Journal of Agricultural and Food Chemistry, 56(6), 1810-1817.
Gutiérrez, Alegret, & del Valle (2007). Potentiometric bioelectronic tongue for the analysis of urea and alkaline ions in clinical samples. Biosensors and Bioelectronics, 22(9), 2171-2178.
Gutiérrez, Moo, Alegret, Leija, Hernández, Muñoz, & del Valle (2008). Electronic tongue for the determination of alkaline ions using a screen-printed potentiometric sensor array. Microchimica Acta, 163(1), 81-88.
Hu, Stein, & Bühlmann (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends in Analytical Chemistry, 76, 102-114.
Ishimatsu, Izadyar, Kabagambe, Kim, Kim, & Amemiya (2011). Electrochemical Mechanism of Ion–Ionophore Recognition at Plasticized Polymer Membrane/Water Interfaces. Journal of the American Chemical Society, 133(40), 16300-16308.
Kutyła-Olesiuk, Ciosek, Romanowska, & Wróblewski (2013). Effect of lead accumulation in maize leaves on their chemical images created by a flow-through electronic tongue. Talanta, 103, 179-185.
Legin, Rudnitskaya, Vlasov, Natale, & D’Amico. (1999). The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators B: Chemical, 58(1), 464-468.
Lvova, Kim, Legin, Vlasov, Yang, Cha, & Nam. (2002). All-solid-state electronic tongue and its application for beverage analysis. Analytica Chimica Acta, 468(2), 303-314.
May, Murray, & Thomas. (1985). Calibration of ionized calcium and magnesium with ligand mixtures for intracellular ion-selective electrode measurements. Analytical Chemistry, 57(8), 1511-1517.
Nery, Jastrzębska, Żukowski, Wróblewski, Chudy, & Ciosek. (2014). Flow-through sensor array applied to cytotoxicity assessment in cell cultures for drug-testing purposes. Biosensors and Bioelectronics, 51, 55-61.
Nery, & Kubota. (2016). Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine. Analytica Chimica Acta, 918, 60-68.
Nery, Guimarães, & Kubota (2015). Paper‐Based Electronic Tongue. Electroanalysis, 27(10), 2357-2362.
Nuñez, Cetó, Pividori, Zanoni, & del Valle (2013). Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters. Microchemical Journal, 110, 273-279.
Ciosek, Pokorsk, Romanowska, & Wro´blewski (2006). The Recognition of Growth Conditions and Metabolic Type of Plants by a Potentiometric Electronic Tongue. Electroanalysis, 18(13‐14), 1266-1272.
Podrażka, Bączyńska, Kundys, Jeleń, & Nery (2018). Electronic Tongue—A Tool for All Tastes? Bioensors, 8(1), 3.
Ripley (2007). Pattern recognition and neural networks: Cambridge university press.
Ruch, Hu, Capua, Temiz, Paredes, Lopez, Matsumoto (2019). A portable potentiometric electronic tongue leveraging smartphone and cloud platforms. Paper presented at the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN).
Sorvin, Belyakova, Stoikov, Shamagsumova, & Evtugyn (2018). Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks. Frontiers in chemistry, 6, 134-134.
Tahara, & Toko (2013). Electronic Tongues–A Review. IEEE Sensors Journal, 13(8), 3001-3011.
Toko. (2000). Taste sensor. Sensors and Actuators B: Chemical, 64(1), 205-215.
Uchida. (2000). Essential nutrients for plant growth: nutrient functions and deficiency symptoms. 31-55.
Vlasov, Legin, Rudnitskaya, Di Natale, & D'Amico. (2005). Nonspecific sensor arrays ("electronic tongue") for chemical analysis of liquids (IUPAC Technical Report). Pure and Applied Chemistry , 77, 1965.
Vázquez, Bobacka, Ivaska, & Lewenstam (2002). Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 82(1), 7-13.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top