(3.238.7.202) 您好!臺灣時間:2021/02/25 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:Adhisankar Vadivelmurugan
研究生(外文):Adhisankar Vadivelmurugan
論文名稱:Glutathione exfoliated MoS2 nanomaterials for Fluorescence imaging, Drug delivery and its Paramagnetic properties
論文名稱(外文):Glutathione exfoliated MoS2 nanomaterials for Fluorescence imaging, Drug delivery and its Paramagnetic properties
指導教授:蔡協致
指導教授(外文):Hsieh-Chih Tsai
口試委員:李榮和陳奕君何明樺陳建光蔡協致
口試委員(外文):Rong-Ho LeeYi-Chun ChenMing-Hua HoJem-Kun ChenHsieh-Chih Tsai
口試日期:2019-10-25
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:103
中文關鍵詞:MoS2Quantum dotsDrug carriersParamagnetic properties
外文關鍵詞:MoS2Quantum dotsDrug carriersParamagnetic properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二硫化鉬(MoS2)是一種傳統的層狀二維過渡金屬二硫屬元素化物( TMD- Transition metal dicholcogenide), 在最近幾年獲得了極大的關注。當二硫化鉬剝離成單層結構會存在明顯半導體能隙1.8 eV,不同與導電的石墨烯,因此衍生了其在科學及工程領域上之實用性。在所有TMD中,MoS2由於其獨特的光電,催化,半導體,能量收集和生物學特性(包括螢光影像,MRI影像,藥物及基因傳遞等)而具有特殊應用潛力。
本論文包含三個獨立的研究:第一個部分是各種含硫配體做為螢光MoS2量子點表面改植及製備及其螢光成像探討,在此研究中,我們使用簡單且環保的水熱法合成了MoS2量子點(Quantum dots)和各種配體,包括L-穀胱甘肽 (Glutathione),巰基琥珀酸(Mercaptosuccinic acid),半胱胺(Cysteamine)和一硫代甘油(Monothioglycerol)。其中,由於GSH-MoS2 QD尺寸較小,螢光強度高,生物相容性好可作為細胞顯影上使用。
第二個部分利用雙親媒性高分子F127自組裝MoS2形成奈米複合材料,並利用其作還原響應抗癌藥物載體之傳遞系統。我們利用胱胺-穀胱甘肽修飾於MoS2系統裡並以雙親媒性F127(PF127)的自組裝成藥物載體,此藥物載體可在細胞質之還原條件(GSH)下觸發藥物之釋放。在體外模擬還原環境中72小時後,載有藥物的PF127-CYS-GSH MoS2奈米複合材料能有效釋放了52%的藥物含量。此外,當藥物載體與6小時Hela細胞共培養,螢光顯微鏡可觀察到藥物從奈米複合材料中緩慢釋放出來,並且可以累積於HeLa細胞之細胞核內。
第三部分中我們同樣利用穀胱甘肽(GSH)在超音波探針超協助處理下剝離MoS2,並形成MoS2-GSH納米粒子。接著藉由靜電相互作用將尾端但正電具胺基的聚乙二醇(MoS2-GSH-AEPEG)改植於MoS2-GSH表面,並進一步表面含聚乙二醇及未改植的奈米粒子與Mn2+離子螯合。最後,使用超導量子儀器計算了MoS2-GSH-Mn和MoS2-GSH-AEPEG-Mn樣品之順磁性能。具胺基PEG修飾的MoS2的磁滯迴線比MoS2-GSH-Mn高,且其數值分別為17.5和15 emug-1,此證明當MoS2表面有高分子親水層修飾下可以顯著增強了順磁性。
MoS2 is a traditional layered 2D transition metal dichalcogenide. It is a remarkable transition metal chalcogenide with a distinct direct band gap of 1.8 eV as it is exfoliated into monolayers. Among familiar TMDs, MoS2 has obtained extraordinary significance due to its unique optoelectronic, catalytic, semiconducting, energy harvesting, and biological properties which include fluorescent imaging, MRI imaging, drug delivery, gene delivery.
This thesis is established on the three separate research parts: The first project concern with preparation of fluorescent MoS2 quantum dots conjugated with various ligands, and its fluorescence imaging. In this study simple and ecofriendly hydrothermal method has been used to synthesize MoS2 quantum dots (QDs) with various ligands, L-glutathione (GSH), mercaptosuccinic acid (MSA), cysteamine (CYS), and monothioglycerol (MTG). Among them, GSH-MoS2 QDs demonstrated as an efficient fluorescence probe due to its smaller size, high fluorescence intensity, and good bio-compatibility.
The second project discussed that pluronic F127 self-assembled MoS2 nanocomposites as an effective glutathione responsive anticancer drug delivery system. Here in, bio-responsive polymeric MoS2 nanocomposites were prepared for use as a drug carrier for cancer therapy. Herein, we report the synthesis and demonstrate the self-assembly of pluronic-F127 (PF127) on a cystamine-glutathione-MoS2 system, which can be used for GSH-triggered drug release under biological reducing conditions. The morphology of the nanocomposite tended to change, ultimately leading to drug release. The drug-loaded PF127-CYS-GSH MoS2 polymeric nanocomposites efficiently released 52% of their drug content after 72 h of incubation in a GSH reduction environment. Furthermore, after 6 h of incubation, with Hela cells in florescence microscope, the drug was slowly released from the nanocomposite and could enter the nucleus as confirmed by fluorescence imaging of HeLa cells.
The third project approach with, bulk MoS2 was exfoliated by glutathione (GSH) with probe sonication to form MoS2-GSH nanoparticles. Then, MoS2-GSH was coated with amine-terminated polyethylene glycol (MoS2-GSH-AEPEG) through electrostatic interactions, and both the coated and uncoated nanoparticles were chelated with Mn. Finally, the paramagnetic properties of the MoS2-GSH-Mn and MoS2-GSH-AEPEG-Mn samples were calculated using a superconducting quantum interference device. The amino PEG-modified MoS2 exhibited higher magnetic hysteresis loops than MoS2-GSH-Mn, i.e., 17.5 and 15 emug-1respectively, owing to the AEPEG-coated surface of MoS2 significantly enhancing the magnetic properties.
中文摘要.......................................................................................................................................i
Abstract………………………………………………………………………………………iii Acknowledgement…………………………………………………………………………. ...v
List of Figures…………………………………………………………………………...…... x
List of tables…………………………………………………………………………………xii
List of schemes……………………………………………………………………………...xiii
List of abbreviations……………………………………………………………………...... xiv
1. Introduction………………………………………………………………………………....1
1.1. General introduction about Molybdenum Disulphide (MoS2). …………………...1
1.2 Exfoliation methods of MoS2………………………………………………….…...2
1.2.1. Top-down synthesis……………………………………………………………...2
1.2.2. Mechanical exfoliation…………………………………………………………..3
1.2.3. Liquid exfoliation……….……………………………………………………... .3
1.2.4. Bottom-up synthesis………………………………………………………….….4
1.2.5. Colloidal Synthesis………………………………………………………………4
1.3. MoS2 QDs Synthesis…………………………………………………………… ...5
1.4. Surface modification of MoS2………………………………………………. …...5
1.5. Applications of 2D MoS2………………………………………………...…….….6
1..5.1. Targeted Photo therapy……………………………………………………....6
1.5.2. Biocompatibility………………………………………………………………7
1.5.3. Stimuli responsive Drug delivery systems……………………………………8
1.5.4 Reduction-sensitive drug delivery system………………………………….….8

1.5.4. Glutathione reduction sensitive drug delivery system………………………..9
1.5.5. Fluorescent imaging ………………………………………………………….9
1.6. Magnetic properties…………………………………………………………......10
2.Research Objectives…………………………………………………………………….….11
3. Preparation of fluorescent MoS2 quantum dots conjugated with various ligands, and its fluorescence imaging…….………………………………………………………..................12
3..1. Introduction………………………………………………………………………....12
3..2. Experimental section……………………………………………………………......13
3.2.1. Materials………………………………………………………………………13
3.2.2. Synthesis of MoS2 QDs with various ligands…………………………...…....13
3.2.3. Characterization…………………………………………….…………………13
3.2.4. Internalization……………………………………………………………...….13
3.2.5. Cytotoxicity Test (WST) assay…………………………………………….....14
3..3. Results and discussion…………………………………………………………...….15
3.3.1. Structures of four ligands……………………………………………………..15
3.3.2. Confirmation of functionalization. …………………………………………...16
3.3.3. Size and zeta and morphology and florescence properties of prepared different
ligand modified MoS2 QDs………………………………………………………...18
3.3.4. Aggregation induced fluorescence quenching and Florescence imaging of
GSH MoS2 QD...........................................................................................................21
3.4. Conclusion…………………………………………………………………………....23
Chapter.4. Pluronic F127 self-assembled MoS2 nanocomposites as an effective glutathione responsive anticancer drug delivery system………………………………………………...24
4.1. Introduction………………………………………………………………………….24
4.2. Experimental section………………………………………………………………...27
4.2.1. Materials……………………………………………………………………….27
4.2.2. Characterization of MoS2–GSH–CYS–PF127 and DOX-loaded MoS2–GSH–
CYS-PF127………………………………………………………….………………...28
4.2.3. Preparation of MoS2–GSH nanoparticles………………………………….….29
4.2.4. Preparation of MoS2–GSH–CYS–PF127 nanocomposite…………………….29
4.2.5. Drug loading…………………………………………………………………...30
4.2.6. Drug release experiment in a reduction-sensitive environment……………….31
4.2.7.GSH-responsiveness of DOX-loaded MoS2–GSH–CYS–PF127
Nanocomposites…………………………………………………………….….........31
4.2.8. MTT assay………………………………………………………………….….32
4.3. Results and discussion…………………………………………………………….…...33
4.3.1. Particle size and zeta potential……………………………………………. …...33
4.3.2 UV-visible spectroscopy………………………………………………………...34
4.3.3. Transmission electron spectroscopy (TEM)……………………………….…....37
4.3.4. Determination of drug loading of MoS2-GSH-CYS–PF127 nanocomposites….38
4.3.5. UV-visible spectroscopy, particle size, zeta potential, GSH reduction sensitivity
and cumulative drug release studies of DOX-loaded MoS2-GSH-CYSPF127……......39
4.3.6. In vitro cytotoxicity of MoS2-GSH-CYS-PF127, free DOX, and DOX-loaded
MoS2-GSH-CYS-PF127 nanocomposites……………………………………………..42
4.3.8. Cellular uptake and intracellular release of DOX-loaded MoS2-GSH-CYS–
PF127 nanocomposites……………………………………….………………….…….45
4.4. Conclusion…………………………………………………………………………….49
5. Paramagnetic properties of manganese chelated on glutathione-exfoliated MoS2……….50
5.1. Introduction……………………………………………………………………….….50
5.2. Experimental Section…………………………………………………………...…....53
5.2.1. Materials…………………………………………………….………………....53
5.2.2. Synthesis of MoS2-GSH nanoparticles……………………………….…….…54
5.2.3. Preparation of MoS2-GSH-Mn and MoS2-GSH–AEPEG-Mn. ………………54
5.2.4. Characterization of MoS2-GSH-Mn and MoS2-GSH-AEPEG-Mn. …………54
5.3. Results and discussion……………………………………………………………….55
5.3.1. Fourier-transform IR spectroscopy……………………………………….……55
5.3.2. Raman spectroscopy comparison of MoS2-GSH, MoS2-GSH-Mn, and MoS2-
GSH- AEPEG-Mn…………………………………………………………………….56
5.3.3. Particle size and zeta potential………………………………………………....58
5.3.4. Morphology of Nanoparticle analysis by TEM……………………………......59
5.3.5. UV-Visible properties of prepared MoS2 nanomaterials………………………60
5.3.6. Fluorescence properties of prepared MoS2 nanomaterials………………...…...62
5.3.7. Paramagnetic properties of MoS2-GSH-Mn and MoS2-GSH-AEPEG-Mn…... 63
5.4. Conclusion………………………………………………………………………….…. .65
References …………………………………………………………………………………...66
Appendix. A.………………………………………………………………………………...88
Appendix. B.…………………………………………………………………........................89
1. Huang, X.; Zeng, Z.; Zhang, H.; Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews. 2013,42(5),1934-1946.
2. Chhowalla, M.; Shin, HS.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H.; The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry. 2013,5(4),263-275.
3. Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S.; Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012,7(11), 699-712.
4. Ramakrishna Matte, H.S.; Gomathi, A.; Manna, A.K.; Late, D.J.; Datta, R.; Pati, S.K.; Rao, C.N.; MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition. 2010,49(24), 4059-62.
5. Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science. 2007,317(5834),100-102.
6. Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S,V.; Geim, A.K.; Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences. 2005, 102(30), 10451-10453.
7. Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H.; Single-layer MoS2 phototransistors. ACS nano. 2011, 6(1), 74-80.
8. Wang, X.; Feng, H.; Wu, Y.; Jiao, L.; Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. Journal of the American Chemical Society. 2013, 135(14), 5304-5307.
9. Li, Q.; Newberg, JT.; Walter, EC.; Hemminger, JC.; Penner, RM.; Polycrystalline molybdenum disulfide (2H− MoS2) nano-and microribbons by electrochemical/chemical synthesis. Nano Letters. 2004, 4(2), 277-281.
10. Mason, T.J.; Uses of power ultrasound in chemistry and processing. Applied Sonochemistry. 2002.
11. Novoselov, KS.; Geim, AK.; Morozov, SV.; Jiang, D.; Zhang, Y.; Dubonos, SV.; Grigorieva, IV.; Firsov, AA.; Electric field effect in atomically thin carbon films. science. 2004, 306(5696),666-669.
12. Brivio, J.; Alexander, DT.; Kis, A.; Ripples and layers in ultrathin MoS2 membranes. Nano letters. 2011, 11(12), 5148-5153.
13. Splendiani, A.; Sun, L.; Zhang, Y.; Li ,T.; Kim, J.; Chim, CY.; Galli, G.; Wang, F.; Emerging photoluminescence in monolayer MoS2. Nano letters. 2010, 10(4), 1271-1275.
14. Gacem, K.; Boukhicha, M.; Chen, Z.; Shukla, A.; High quality 2D crystals made by anodic bonding: a general technique for layered materials. Nanotechnology. 2012, 23(50), 505709.
15. Niu, L.; Coleman, JN.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z.; Production of two‐dimensional nanomaterials via liquid‐based direct exfoliation. Small. 2016, 12(3), 272-93.
16. Khan, U.; Porwal, H.; O’Neill, A.; Nawaz, K.; May, P.; Coleman, JN.; Solvent-exfoliated graphene at extremely high concentration. Langmuir. 2011,27(15), 9077-9082.
17. Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H.; Single‐Layer Semiconducting Nanosheets: High‐yield preparation and device fabrication. Angewandte Chemie International Edition. 2011, 50(47), 11093-11097.
18. Lukowski, MA.; Daniel, AS.; Meng, F.; Forticaux, A.; Li, L.; Jin, S.; Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of the American Chemical Society. 2013, 135(28), 10274-10277.
19. Ambrosi, A.; Sofer, Z.; Pumera, M.; Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small. 2015,11(5),605-612.
20. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M.; Photoluminescence from chemically exfoliated MoS2. Nano letters. 2011,11(12),5111-5116.
21. Li, X.; Zhu, H.; Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics. 2015,1(1), 33-44.
22. Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, PM.; Lou, J.; Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 2012, 8(7),966-971.
23. Liu, K.K.; Zhang, W.; Lee, Y.H.; Lin, Y.C.; Chang, M.T.; Su, C.Y.; Chang, C.S.; Li, H.; Shi, Y.; Zhang, H.; Lai, CS.; Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters. 2012 ,12(3),1538-44.
24. Lin,Y.C.; Zhang, W.; Huang, J.K.; Liu, K.K.; Lee, Y.H.; Liang, C.T.; Chu, C.W.; Li, L.J.; Wafer-scale MoS 2 thin layers prepared by MoO 3 sulfurization. Nanoscale. 2012, 4(20),6637-6641.
25. Cushing, B.L.; Kolesnichenko, V.L.; O'Connor, C.J.; Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical reviews. 2004, 104(9), 3893-946.
26. Son, D.; Chae, SI.; Kim, M.; Choi, MK.; Yang, J.; Park, K.; Kale, VS.; Koo, JH.; Choi, C.; Lee, M.; Kim, JH.; Colloidal synthesis of uniform‐sized molybdenum disulfide nanosheets for wafer‐scale flexible nonvolatile memory. Advanced Materials. 2016, 28(42), 9326-9332.
27. Yang, H.; Giri, A.; Moon, S.; Shin, S.; Myoung, J.M.; Jeong, U.; Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chemistry of Materials. 2017, 29(14),5772-5776.
28. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, CY.; Galli, G.; Wang, F.; Emerging photoluminescence in monolayer MoS2. Nano letters. 2010,10(4), 1271-1275.
29. Gopalakrishnan, D.; Damien, D.; Shaijumon, M.M.; MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS nano. 2014, 8(5),5297-5303.
30. Štengl, V.; Henych, J.; Strongly luminescent monolayered MoS 2 prepared by effective ultrasound exfoliation. Nanoscale. 2013,5(8),3387-3394.
31. Tuxen, A.; Kibsgaard, J.; Gøbel, H.; Lægsgaard, E.; Topsøe, H.; Lauritsen, JV.; Besenbacher, F.; Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. Acs Nano. 2010, 4(8), 4677-4682.
32. Chou, S.S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V.P.; Ligand conjugation of chemically exfoliated MoS2. Journal of the American Chemical Society. 2013,135(12), 4584-4587.
33. Dolmans, D.E.; Fukumura, D.; Jain, R.K.; Photodynamic therapy for cancer. Nature reviews cancer. 2003, 3(5), 380-387.
34. Pandey, R.K.; Recent advances in photodynamic therapy. Journal of Porphyrins and Phthalocyanines. 2012.
35. Rao, C.N.; Matte, H.R.; Subrahmanyam, K.S.; Synthesis and selected properties of graphene and graphene mimics. Accounts of chemical research. 2012, 46(1), 149-159.
36. Chou, S.S.; Kaehr, B.; Kim, J.; Foley, B.M.; De, M.; Hopkins, P.E.; Huang, J.; Brinker, C.J.; Dravid, V.P.; Chemically exfoliated MoS2 as near‐infrared photothermal agents. Angewandte Chemie International Edition. 2013, 52(15), 4160-4164.
37. Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu,W.; Imaging: PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual‐Modal CT/Photoacoustic Imaging Guided Photothermal Therapy . Adv. Mater. 2014,26(12),1794-.1794.
38. Li, J.; Jiang, F.; Yang, B.; Song, XR.; Liu, Y.; Yang, HH.; Cao, DR.; Shi, WR.; Chen, GN.; Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Scientific reports. 2013,3,1998.
39. Shah, P.; Narayanan, TN.; Li, CZ.; Alwarappan, S.; Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology. 2015,26(31), 315102.
40. Mura, S.; Nicolas, J.; Couvreur, P.; Stimuli-responsive nanocarriers for drug delivery. Nature materials. 2013,12(11),991-1003.
41. Ma,Z.; Jia, X., Hu, J.; Zhang, G.; Zhou, F.; Liu, Z.; Wang, H.; Dual-responsive capsules with tunable low critical solution temperatures and their loading and release behavior. Langmuir. 2013, 29(19), 5631-5637.
42. Alvarez‐Lorenzo, C.; Bromberg, L.; Concheiro, A.; Light‐sensitive intelligent drug delivery systems. Photochemistry and photobiology. 2009, 85(4), 848-60.
43. Arruebo, M.; Fernández-Pacheco, R.; Ibarra, MR.; Santamaría, J.; Magnetic nanoparticles for drug delivery. Nano today. 2007, 2(3), 22-32.
44. Kim, J.; Lee, YM.; Kang, Y.; Kim, WJ.; Tumor-homing, size-tunable clustered nanoparticles for anticancer therapeutics. Acs Nano. 2014, 8(9), 9358-67.
45. Son, S.; Namgung, R.; Kim, J.; Singha, K.; Kim, WJ.; Bioreducible polymers for gene silencing and delivery. Accounts of chemical research. 2011, 45(7),1100-12.
46. Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z.; ATP-triggered anticancer drug delivery. Nature communications. 2014, 5, 3364.
47. Zhao, W.; Li, A.; Chen, C.; Quan, F.; Sun, L.; Zhang, A.; Zheng, Y.; Liu, J.; Transferrin-decorated, MoS 2-capped hollow mesoporous silica nanospheres as a self-guided chemo–photothermal nanoplatform for controlled drug release and thermotherapy. Journal of Materials Chemistry B. 2017, 5(35), 7403-7414.
48. Allen, T.M.; Cullis, P.R.; Drug delivery systems: entering the mainstream. Science. 2004, 303(5665),1818-1822.
49. Chen, X.; McDonald, AR.; Functionalization of Two‐Dimensional Transition‐Metal Dichalcogenides. Advanced Materials. 2016 ,28(27), 5738-5746.
50. Chou, S.S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, VP.; Ligand conjugation of chemically exfoliated MoS2. Journal of the American Chemical Society. 2013, 135(12), 4584-4587.
51. Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, JB.; Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer research. 1986, 46(6), 2845-2848.
52. Arul, NS.; Nithya, VD.; Molybdenum disulfide quantum dots: synthesis and applications. RSC Advances. 2016, 6(70), 65670-65682.
53. Wu, X.; Li, Y.; Lin, C.; Hu, XY.; Wang, L.; GSH-and pH-responsive drug delivery system constructed by water-soluble pillar [5] arene and lysine derivative for controllable drug release. Chemical Communications. 2015, 51(31), 6832-6835.
54. Liu, J.; Li, F.; Zheng, J.; Li, B.; Zhang, D.; Jia, L.; Redox/NIR dual-responsive MoS 2 for synergetic chemo-photothermal therapy of cancer. Journal of nanobiotechnology. 2019, 17(1), 78.
55. Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y.; One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications. 2012, 48(3), 380-382.
56. Zhang, Y.; Xiu, W.; Sun, Y.; Zhu, D.; Zhang, Q.; Yuwen, L.; Weng, L.; Teng, Z.; Wang, L.; RGD-QD-MoS 2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale. 2017, 9(41), 15835-15845.
57. Li, L.; Guo, Z.; Wang, S.; Li, D.; Hou, X.; Wang, F.; Yang, Y.; Yang, X.; Facile Synthesis of MoS2 Quantum Dots as Fluorescent Probes for Sensing of Hydroquinone and Bioimaging. Analytical Methods. 2019.
58. Wang, Y., Li, S.; Yi, J.; Electronic and magnetic properties of Co doped MoS 2 monolayer. Scientific reports. 2016, 6, 24153.
59. Li, Y.; Zhou, Z.; Zhang, S.; Chen, Z.; MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. Journal of the American Chemical Society. 2008, 130(49), 16739-16744.
60. Wang, J.; Sun, F.; Yang, S.; Li, Y.; Zhao, C.; Xu, M.; Zhang, Y.; Zeng, H.; Robust ferromagnetism in Mn-doped MoS2 nanostructures. Applied Physics Letters. 2016, 109(9), 092401.
61. Wang, Y.; Li, S.; Yi, J.; Electronic and magnetic properties of Co doped MoS 2 monolayer. Scientific reports. 2016, 6, 24153.
62. Arul, NS.; Nithya, VD.; Molybdenum disulfide quantum dots: synthesis and applications. RSC Advances. 2016, 6(70), 65670-65682.
63. Lin, H.; Wang, C.; Wu, J.; Xu, Z.; Huang, Y.; Zhang, C.; Colloidal synthesis of MoS 2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New Journal of Chemistry. 2015,39(11), 8492-8497.
64. Wang, H.; Yu, L.; Lee, YH.; Shi, Y.; Hsu, A.; Chin, ML.; Li, LJ.; Dubey, M.; Kong, J.; Palacios, T.; Integrated circuits based on bilayer MoS2 transistors. Nano letters. 2012, 12(9), 4674-4680.
65. Pak, J.; Jang, J.; Cho, K.; Kim, T.Y.; Kim, J.K.; Song, Y.; Hong, W.K.; Min, M.; Lee, H.; Lee, T.; Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale, 2015,7(44),18780-8.
66. Wang, L.; Wang, Y.; Wong, JI.; Palacios, T.; Kong, J.; Yang, HY.; Functionalized MoS2 nanosheet‐based field‐effect biosensor for label‐free sensitive detection of cancer marker proteins in solution. Small. 2014, 10(6), 1101-1115.
67. Sun, Z.; Liao, T.; Dou, Y.; Hwang, SM.; Park, MS.; Jiang, L.; Kim, JH.; Dou, SX.; Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nature communications. 2014, 5, 3813.
68. Voiry, D.; Goswami, A.; Kappera, R.; e Silva, CD.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M.; Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature chemistry. 2015, 7(1), 45-49.
69.Anbazhagan, R.; Su,YA.; Tsai, HC.; Jeng, RJ.; MoS2–Gd Chelate Magnetic Nanomaterials with Core–Shell Structure Used as Contrast Agents in in Vivo Magnetic Resonance Imaging. ACS applied materials & interfaces. 2016 ,8(3), 1827-1835.
70. Wang, Y.; Ni, Y.; Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection. Analytical chemistry. 2014, 86(15),7463-7470.
71. Štengl, V.; Henych, J.; Strongly luminescent monolayered MoS 2 prepared by effective ultrasound exfoliation. Nanoscale. 2013, 5(8), 3387-3394.
72.Quinn, J.F.; Whittaker M.R.; Davis, T.P.; Glutathione responsive polymers and their application in drug delivery systems. Polymer Chemistry. 2017, 8(1), 97-126.
73.Kim, J.; Kim, H.; Kim, W. J.; Single‐Layered MoS2–PEI–PEG Nanocomposite‐Mediated Gene Delivery Controlled by Photo and Redox Stimuli. Small 2016 ,12(9), 1184-92.
74.Kircheis, R.; Wightman, L.; Wagner, E.; Design and gene delivery activity of modified polyethylenimines. Advanced drug delivery reviews 2001, 53(3), 341-58.
75.Shim, M.S.; Kwon, Y.J.; Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced drug delivery reviews 2012, 64(11), 1046-59.
76.Kim, K.S.; Park, W.; Hu, J.; Bae YH, Na K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials 2014, 35(1):337-43.
77.Huo, M.; Yuan, J.; Tao, L.; Wei, Y.; Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry 2014, 5(5), 1519-28.
78.Akimoto, J.; Nakayama, M.; Okano, T.; Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. Journal of controlled release 2014, 193, 2-8.
79.Callmann, C.E.; Barback, C.V.; Thompson, M.P.; Hall, D.J; Mattrey, R.F.; Gianneschi N.C.; Therapeutic Enzyme‐Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Advanced materials 2015 (31), 4611-5.
80.Wang, J.; Liu, J.; Liu, Y.; Wang, L.; Cao, M.; Ji, Y.; Wu, X.; Xu, Y.; Bai, B.; Miao, Q.; Chen, C.; Gd‐Hybridized Plasmonic Au‐Nanocomposites Enhanced Tumor‐Interior Drug Permeability in Multimodal Imaging‐Guided Therapy. Advanced Materials 2016 (40), 8950-8.
81.Zhang, H.; Fei, J.; Yan, X.; Wang, A.; Li, J.; Enzyme‐Responsive Release of Doxorubicin from Monodisperse Dipeptide‐Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro. Advanced Functional Materials. 2015 (8), 1193-204.
82.Silva, A.K.; Ménager, C.; Wilhelm. C.; Magnetic drug carriers: bright insights from light-responsive magnetic liposomes. Nanomedicine 2015 (18), 2797-9.
83.Shanmugam, V.; Selvakumar, S.; Yeh, C.S.; Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews. 2014; 43(17), 6254-87.
84.Li, H.; Tan, L.L.; Jia, P.; Li, Q.L.; Sun, Y.L.; Zhang, J.; Ning, Y.Q.; Yu, J.; Yang, Y.W.; Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chemical Science 2014;5(7), 2804-8.
85.Yu, J.; Yin, W.; Zheng, X.; Tian, G.; Zhang, X.; Bao, T.; Dong, X.;Wang, Z.; Gu ,Z.; Ma, X.; Zhao, Y.; Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 2015, 5(9), 931.
86.Cheng, R.; Meng, F.; Deng. C.; Klok, H.A.; Zhong, Z.; Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34(14), 3647-57.
87.Zhuang, J.; Gordon, M.R.; Ventura, J.; Li, L.; Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chemical Society Reviews 2013, 42(17), 7421-35.
88.Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit. R.; Langer, R.; Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology 2007, 2(12):751.
89.Fleige, E.; Quadir, M. A.; Haag, R.; Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Advanced drug delivery reviews. 2012 64(9), 866-84.
90.Cheng, R.; Meng, F.; Deng, C.; Klok, H.A.; Zhong, Z.; Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013, 34(14), 3647-57.
91.Torchilin, V.P.; Multifunctional stimuli-sensitive nanoparticulate systems for drug delivery. Nature reviews Drug discovery 2014 13(11), 813-27.
92.Stuart, M.A.; Huck, W.T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I, Tsukruk. V.V; Urban, M.; Winnik, F.; Emerging applications of stimuli-responsive polymer materials. Nature materials 2010 9(2), 101.
93.Yang, X.; Liu, X.; Liu, Z.; Pu, F.; Ren, J.; Qu, X.; Near‐infrared light‐triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles, Advanced materials 2012, 24(21), 2890-5.
94.Saito, G.; Swanson, J.A.; Lee, K.D.; Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Advanced drug delivery reviews. 2003, 55 (2), 199-215.
95.Luo, Z.; Cai, K.; Hu, Y.; Li, J.; Ding, X.; Zhang, B.; Xu, D.; Yang, W.; Liu,P.; Redox‐responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Advanced materials. 2012 Jan 17;24(3):431-5.
96.Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H.J.; Kim, C.; Glutathione‐induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Advanced Materials. 2010 22(38), 4280-3.
97.Cerritelli, S.; Velluto, D.; Hubbell, J.A; PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 2007, 8(6):1966-72.
98.Eloi, J.C.; Rider, D.A.; Cambridge, G.; Whittell, G.R.; Winnik, M.A.; Manners, I.; Stimulus-responsive self-assembly: reversible, redox-controlled micellization of polyferrocenylsilane diblock copolymers. Journal of the American Chemical Society. 2011, 133(23):8903-13.
99.Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J.A.; Oxidation-responsive polymeric vesicles. Nature materials. 2004, 3(3), 183.
100.Zhao, Y.L.; Li, Z.; Kabehie, S.; Botros, Y.Y.; Stoddart, J.F; Zink, J.I.; pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. Journal of the American Chemical Society. 2010 132 (37), 13016-25.
101.Tu, Y.; Peng, F.; White, P.; B, Wilson, D.; A. Redox‐sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angewandte Chemie International Edition. 2017, 56(26):7620-4.77.
102.Wu, X.; Li, Y.; Lin, C.; Hu, X.Y.; Wang, L.; GSH-and pH-responsive drug delivery system constructed by water-soluble pillar [5] arene and lysine derivative for controllable drug release. Chemical Communications 2015, 51(31), 6832-5.
103.Chen, S.C.; Lin, C.Y.; Cheng, T.L.; Tseng, W.L.; 6‐Mercaptopurine‐Induced Fluorescence Quenching of Monolayer MoS2 Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathione‐Stimulated Drug Delivery. Advanced Functional Materials. 2017 27(41), 1702452.
104.Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui Y, Gupta J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; Johnston-Halperin, E. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 2013, 7(4):2898-926.
105.Guo, Y.; Xu, K.; Wu, C.; Zhao, J.; Xie, Y.; Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chemical Society Reviews. 2015; 44(3), 637-46.
106.Vadivelmurugan, A.; Anbazhagan, R.; Arunagiri, V.; Lai, J.Y.; Tsai, H.C.; Pluronic F127 self-assembled MoS2 nanocomposites as an effective glutathione responsive anticancer drug delivery system. RSC Advances. 2019, 9(44),25592-601.
107.Bitounis, D.; Ali‐Boucetta, H.; Hong, B.H.; Min, D.H.; Kostarelos, K.; Prospects and challenges of graphene in biomedical applications. Advanced Materials 2013, 25(16):2258-68.
108.Park, S.; Ruoff, R.S.; Chemical methods for the production of graphenes. Nature nanotechnology. 2009, 4(4):217.
109.Chhowalla, M.; Shin, HS.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H.; The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry 2013 5(4), 263.
110.Wang, Q.H.; Kalantar-Zadeh, K, Kis. A.; Coleman, J.N.; Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012 7(11):699.
111.Chou, S.S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V.P.; Ligand conjugation of chemically exfoliated MoS2. Journal of the American Chemical Society 2013 135(12),4584-7.
112.Teo, W.Z.; Chng, E.L.; Sofer, Z.; Pumera, M.; Cytotoxicity of exfoliated transition‐metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chemistry–A European Journal 2014 20(31), 9627-32.
113.Son, S.; Namgung, R.; Kim J, Singha K, Kim WJ. Bioreducible polymers for gene silencing and delivery. Accounts of chemical research. 2011 45(7), 1100-12.
114.Yadav, V.; Roy, S.; Singh, P.; Khan, Z.; Jaiswal, A.; 2D MoS2‐Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small 2019, 15(1):1803706.
115.Dong, X.; Yin, W.; Zhang, X.; Zhu, S.; He, X.; Yu, J.; Xie, J.; Guo, Z.; Yan, L. Liu, X, Wang, Q.; Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS applied materials & interfaces 2018, 10(4):4271-84.
116.Zhang, X.; Wu, J.; Williams, GR.; Niu, S.; Qian, Q.; Zhu, L.M.; Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces. 2019 173, 101-8.
117.Zhu, X.; Ji, X.; Kong, N.; Chen, Y.; Mahmoudi, M.; Xu, X.; Ding, L.; Tao, W.; Cai, T.; Li, Y.; Gan, T.; Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS nano. 2018 12(3): 2922-38.
118.Anbazhagan, R.; Su, YA.; Tsai, HC.; Jeng, RJ.; MoS2–Gd Chelate Magnetic Nanomaterials with Core–Shell Structure Used as Contrast Agents in in Vivo Magnetic Resonance Imaging. ACS applied materials & interfaces 2016, 8(3):1827-35.
119.Mohammad, AM.; Abdelrahman, AI.; El-Deab, MS.; Okajima, T.; Ohsaka, T.; On the aggregation phenomena of Au nanoparticles: Effect of substrate roughness on the particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008, 318(1-3):78-83.
120.Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Gupta, B.K; Jaggi M.; Chauhan, SC.; Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials. 2011 32(7):1890-905.
121.Jain, TK.; Morales, MA.; Sahoo, SK.; Leslie-Pelecky, DL.; Labhasetwar, V.; Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular pharmaceutics. 2005, 2(3), 194-205.
122.Posudievsky OY, Khazieieva OA, Cherepanov VV, Dovbeshko GI, Shkavro AG, Koshechko VG, Pokhodenko VD. Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS 2. Journal of Materials Chemistry C. 2013;1(39):6411-5.
123.Cai, H.; Shen, T.; Kirillov, A.M.; Zhang, Y.; Shan, C.; Li, X.; Liu, W.; Tang, Y.; Self-assembled upconversion nanoparticle clusters for NIR-controlled drug release and synergistic therapy after conjugation with gold nanoparticles. Inorganic chemistry. 2017, 56(9):5295-304.
124.Li, S.; Amat, D.; Peng, Z.; Vanni, S.; Raskin, S.; De Angulo, G.; Othman, A.M; Graham, R.M.; Leblanc, R.M.; Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. 2016; 8 (37), 16662-9.
125.Hu, H.; Yu, J.; Li, Y.; Zhao, J.; Dong, H.; Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. Journal of biomedical materials research Part A. 2012, 100(1): 141-8.
126.Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y.; High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS nan 2014 8(7): 6922-33.
127.Zhang, M.; Xiong, Q.; Chen, J.; Wang, Y.; Zhang, Q. A.; novel cyclodextrin-containing pH-responsive star polymer for nanostructure fabrication and drug delivery. Polymer Chemistry. 2013; 4(19): 5086-95.
128.Baek, C.; Ha, T.L.; Kim, E.; Jeong, S.; Lee, S.; Lee, S.; Kim, HC.; Bioreducible micelles self-assembled from poly (ethylene glycol)-cholesteryl conjugate as a drug delivery platform. Polymers. 2015, 7(11):2245-58.
129.Han, HS.; Thambi, T.; Choi, K.Y.; Son, S.; Ko, H.; Lee, M.C; Jo, D.G; Chae, Y.S; Kang, Y.M.; Lee, J.Y.; Park, J.H., Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery. Biomacromolecules. 2015, 16(2):447-56.
130.Yu, L.; Chen, Y.; Lin, H.; Du, W.; Chen, H.; Shi, J.; Ultramall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials. 2018, 161, 292-305.
131.Lü, S.; Gao, N.; Cao, Z.; Gao, C.; Xu, X.; Bai, X.; Feng, C.; Liu, M.; Pluronic F127–chondroitin sulfate micelles prepared through a facile method for passive and active tumor targeting. RSC Advances. 2016, 6(54), 49263-71.
132.Lü, S.; Gao, N.; Cao, Z.; Gao, C.; Xu, X.; Bai, X.; Feng, C.; Liu M. Pluronic F127–chondroitin sulfate micelles prepared through a facile method for passive and active tumor targeting. RSC Advances. 2016, 6(54), 49263-71.
133. Debele, T.A.; Yu, L.Y.; Yang, C.S.; Shen, YA.; Lo, C.L.; pH-and GSH-sensitive hyaluronic acid-MP conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells. Biomacromolecules. 2018, 19(9), 3725-37.
134. Kumar, P.; Paknikar, K.M.; Gajbhiye, V.; A robust pH-sensitive unimolecular dendritic nanocarrier that enables targeted anti-cancer drug delivery via GLUT transporters. Colloids and Surfaces B: Biointerfaces 2018, 171, 437-44.
135. Li, J.; Shen, S.; Kong, F.; Jiang, T.; Tang, C.; Yin, C.; Effects of pore size on in vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC advances 2018, 8(43), 24633-40.
136.Coleman, J.N.; Lotya M, O’Neill. A.; Bergin, S.D.; King, P.J; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; Shvets IV.; Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011, 331(6017), 568-71.
137.Butler, SZ.; Hollen, SM.; Cao, L.; Cui,Y.; Gupta, JA.; Gutiérrez, HR.; Heinz, TF.; Hong ,SS.; Huang, J.; Ismach, AF.; Johnston-Halperin, E.; Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 2013, 7(4):2898-926.
138.Novoselov, KS.; Jiang, D.; Schedin, F.; Booth, TJ.; Khotkevich, VV.; Morozov, SV.; Geim, AK.; Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences. 2005, 102(30, 10451-3.
139.Chhowalla, M.; Shin, HS.; Eda, G.; Li, LJ.; Loh, KP.; Zhang, H.; The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry. 2013, 5(4):263.
140.Li, H.; Lu, G.; Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Mechanical Exfoliation and Characterization of Single‐and Few‐Layer Nanosheets of WSe2, TaS2, and TaSe2. Small. 2013, 9(11):1974-81.
141.Huang, X.; Zeng, Z.; Zhang, H.; Metal dichalcogenide nanosheets: preparation,
properties and applications. Chemical Society Reviews. 2013, 42(5):1934-46.
142.Chianelli, R.R.; Siadati, MH.; De, la.; Rosa, MP.; Berhault, G.; Wilcoxon, J.P.; Bearden, Jr. R.; Abrams, BL.; Catalytic properties of single layers of transition metal sulfide catalytic materials. Catalysis Reviews. 2006, 48(1):1-41.
143.Wang, Q.H.; Kalantar-Zadeh ,K.; Kis ,A.; Coleman, JN.; Strano, MS.; Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012 7(11):699.
144.Choi, CL.; Feng, J.; Li, Y.; Wu, J.; Zak, A.; Tenne, R.; Dai, H.; WS2 nanoflakes from nanotubes for electrocatalysis. Nano Research. 2013; 6(12):921-8.
145.Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X, Zhang, H., Single-layer MoS2 phototransistors. ACS nano. 2011;6(1):74-80.
146.Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A.; Single-layer MoS2 transistors. Nature nanotechnology. 2011, 6(3):147.
147.Zhao, W.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, PH.; Eda, G.; Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale. 2013, 5(20), 9677-83.
148.Vadivelmurugan, A.; Anbazhagan, R.; Arunagiri, V.; Lai, J.Y.; Tsai, HC.; Pluronic F127 self-assembled MoS 2 nanocomposites as an effective glutathione responsive anticancer drug delivery system. RSC Advances. 2019, 9(44), 25592-601.
149.Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L.; Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chemical reviews. 2018, 118(13):6236-96.
150.McAdams, SG.; Lewis, EA.; Brent, JR.; Haigh, SJ.; Thomas, AG.; O'Brien, P.; Tuna, F.; Lewis, D.J.; Dual Functionalization of Liquid‐Exfoliated Semiconducting 2H‐MoS2 with Lanthanide Complexes Bearing Magnetic and Luminescence Properties. Advanced Functional Materials. 2017 (42):1703646.
151.Martinez, LM.; Karthik, C.; Kongara, M.; Singamaneni, SR.; Paramagnetic defects in hydrothermally grown few-layered MoS2 nanocrystals. Journal of Materials Research. 2018 (11):1565-72.

152.Wang, J.; Sun, F.; Yang, S.; Li, Y.; Zhao, C.; Xu, M.; Zhang, Y.; Zeng H.; Robust ferromagnetism in Mn-doped MoS2 nanostructures. Applied Physics Letters. 2016, 109(9), 092401.
153.Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, TF.; Hone, J.; Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514(7523), 470.
154.Splendiani, A.; Sun, L.; Zhang,Y.; Li, T.; Kim,J.; Chim, C.Y.; Galli, G.; Wang, F.; Emerging photoluminescence in monolayer MoS2. Nano letters 2010,10(4), 1271-5.
155.Ramimoghadam, D.; Bagheri, S.; Hamid,S.B.; In-situ precipitation of ultra-stable nano-magnetite slurry. Journal of Magnetism and Magnetic Materials. 2015, 379, 74-9.
156.Singh, D.; McMillan, JM.; Liu, X.M.; Vishwasrao, H.M; Kabanov, A.V.; Sokolsky-Papkov, M.; Gendelman, H. E.; Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine. 2014 9 (3), 469-85.
157.Chen, Y.W.; Peng, Y.K.; Chou, S.W.; Tseng, Y.J.; Wu, PC.; Wang, S.K.; Lee, Y.W.; Shyue, J.J.; Hsiao, J.K.; Liu, T.M.; Chou, P.T.; Mesoporous silica promoted deposition of bioinspired polydopamine onto contrast agent: A universal strategy to achieve both biocompatibility and multiple scale molecular imaging. Particle & Particle Systems Characterization. 2017 34(6):1600415.
158.A. A.S. Saba, R. Sasan, R; Moradian, One-step synthesis of modified Fe3O4 nanoparticles with enhanced magneticproperty. International Journal of Advanced Research 2016, (4), 825-831.
159.Tai, MF.; Lai, CW.; Abdul Hamid, SB.; Facile synthesis polyethylene glycol coated magnetite nanoparticles for high colloidal stability. Journal of Nanomaterials. 2016, 8612505, 1-7.
160.Ehi-Eromosele, CO.; The Effect of Polyethylene Glycol (PEG) Coating on the Magneto-Structural Properties and Colloidal Stability of Co0. 8Mg02Fe2O4 Nanoparticles for Potential Biomedical Applications. Digest Journal of Nanomaterials and Biostructures. 2016. 11 (1) 7 – 14.
161.Chen, Y.; Tan, C.; Zhang.; Wang, L.; Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews. 2015, 44(9), 2681-701.
162.Zhang K.; Feng, S.; Wang, J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C.; Lerach, J.; Bojan, V.; Kim, M.J.; Manganese doping of monolayer MoS2 the substrate is critical. Nano letters. 2015, 15(10), 6586-91.
163.Mohammad, A.M.; Abdelrahman, A.I; El-Deab, MS.; Okajima, T.; Ohsaka T.; On the aggregation phenomena of Au nanoparticles: Effect of substrate roughness on the particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008, 318(1-3), 78-83.
164.Lee, C.; Yan, H.; Brus, LE.; Heinz, TF.; Hone, J.; Ryu, S.; Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano. 2010 4(5):2695-700.
165.Singh, M.K.; Chettri, P.; Tripathi, A.; Tiwari, A.; Mukherjee, B.; Mandal RK.; Defect mediated magnetic transitions in Fe and Mn doped MoS2. Physical Chemistry Chemical Physics. 2018, 20(23), 15817-23.
166.Gao, S.; Zhou, H.; Cui, S.; Shen, H.; Bottom-up synthesis of MoS2 nanospheres for photothermal treatment of tumors. Photochemical & Photobiological Sciences. 2018, 17(10), 1337-45.
167.Yue-Jian, C.; Juan, T.; Fei, X.; Jia-Bi, Z.; Ning, G.; Yi-Hua, Z.; Ye, D.; Liang G. Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug development and industrial pharmacy. 2010 36(10):1235-44.
168.Xu, Q.; Ensign, LM.; Boylan, NJ.; Schön, A.; Gong, X.; Yang, J.C.; Lamb, N.W.; Cai, S.; Yu, T.; Freire, E.; Hanes, J.; Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS nano. 2015 9(9), 9217-27.
169.Posudievsky, O.Y.; Khazieieva, O.A.; Cherepanov, V.V.; Dovbeshko, G.I.; Shkavro, A.G.; Koshechko, V.G.; Pokhodenko, V.D., Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2. Journal of Materials Chemistry C. 2013;1(39), 6411-5.
170.Yin, W.; Dong, X.; Yu, J.; Pan, J.; Yao, Z.; Gu, Z.; Zhao, Y.; MoS2-nanosheet-assisted coordination of metal ions with porphyrin for rapid detection and removal of cadmium ions in aqueous media. ACS applied materials & interfaces. 2017, 9(25), 21362-70.
171. Liu, Y.M.; Li, M.; Fang, Q.Q.; Lv, Q.R.; Wu, M.Z.; Cao, S.; Structural and photoluminescence properties of polyethylene glycol (PEG)-assisted growth Co-doped ZnO nanorod arrays compared with pure ZnO nanorod arrays. Chinese Journal of Physics. 2010, 48(4), 523-31.
172.Mi, P.; Cabra,l H.; Kokuryo, D.; Rafi, M.; Terada, Y.; Aoki, I.; Saga, T.; Takehiko, I.; Nishiyama, N.; Kataoka, K.; Gd-DTPA loaded polymer–metal complex micelles with high relaxivity for MR cancer imaging. Biomaterials. 2013 34(2), 492-500.
173.Bony, B.A.; Baeck J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Lee, G.H.; Water-soluble D-glucuronic acid coated ultrasmall mixed Ln/Mn (Ln= Gd and Dy) oxide nanoparticles and their application to magnetic resonance imaging. Biomaterials Science. 2014, 2(9), 1287-95.
174.Kao, C.W.; Yang, C.C.; Kao, H.C.; Tung, Y.H.; Hsu, T.W.; Wu, W.C.; Lin K.S.; Role of Fe- Doping Effect in 2-D MoS2 Magnetic Semiconductor. IEEE Transactions on Magnetics. 2018, 54(11):1-3.
電子全文 電子全文(網際網路公開日期:20241121)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔