|
1. C.V. Raman, A new radiation. Indian J. Phys., 1928. 2: p. 368-376. 2. C.V. Raman, Part II.—The Raman effect. Investigation of molecular structure by light scattering. J Transactions of the Faraday Society, 1929. 25: p. 781-792. 3. M. Procházka, Surface-enhanced raman spectroscopy. Biological medical physics, biomedical engineering, 2016. 1: p. 7-18. 4. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002. 14(18): p. R597-R624. 5. M.F. Cardinal, E. Vander Ende, R.A. Hackler, M.O. Mcanally, P.C. Stair, G.C. Schatz, and R.P. Van Duyne, Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews, 2017. 46(13): p. 3886-3903. 6. M. Fleischmann, P. Hendra, and A. Mcquillan, RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC. Chemical physics letters, 1974. 26(2): p. 163-166. 7. D.L. Jeanmaire and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry interfacial electrochemistry, 1977. 84(1): p. 1-20. 8. M.G. Albrecht and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217. 9. S. Schlücker, Surface‐Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 2014. 53(19): p. 4756-4795. 10. D.D. Tuschel, J.E. Pemberton, and J.E. Cook, SERS and SEM of roughened silver electrode surfaces formed by controlled oxidation-reduction in aqueous chloride media. Langmuir, 1986. 2(4): p. 380-388. 11. S.E. Hunyadi and C.J. Murphy, Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering. Journal of Materials Chemistry, 2006. 16(40): p. 3929-3935. 12. H. Wei, J. Li, Y. Wang, and E. Wang, Silver nanoparticles coated with adenine: preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology, 2007. 18(17): p. 175610-175615. 13. M. Kerker, Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids. Accounts of Chemical Research, 1984. 17(8): p. 271-277. 14. K. Wang, S. Li, M. Petersen, S. Wang, and X. Lu, Detection and characterization of antibiotic-resistant bacteria using surface-enhanced raman spectroscopy. Nanomaterials, 2018. 8(10): p. 1-21. 15. P. Lee and D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 1982. 86(17): p. 3391-3395. 16. C.J. Addison and A.G. Brolo, Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering. 2006, J Langmuir. p. 8696-8702. 17. A.J. Haes, C.L. Haynes, A.D. Mcfarland, G.C. Schatz, R.R. Van Duyne, and S.L. Zou, Plasmonic materials for surface-enhanced sensing and spectroscopy. Mrs Bulletin, 2005. 30(5): p. 368-375. 18. C. Farcau and S. Astilean, Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates. Journal of Physical Chemistry C, 2010. 114(27): p. 11717-11722. 19. J.I. Gersten, The effect of surface roughness on surface enhanced Raman scattering. The Journal of Chemical Physics, 1980. 72(10): p. 5779-5780. 20. J. Gersten and A. Nitzan, Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. The Journal of Chemical Physics, 1980. 73(7): p. 3023-3037. 21. S. Mccall and P. Platzman, Raman scattering from chemisorbed molecules at surfaces. Physical Review B, 1980. 22(4): p. 1660-1662. 22. M. Kerker, O. Siiman, and D. Wang, Effect of aggregates on extinction and surface-enhanced Raman scattering spectra of colloidal silver. The Journal of Physical Chemistry, 1984. 88(15): p. 3168-3170. 23. C. Zong, M. Xu, L.J. Xu, T. Wei, X. Ma, X.S. Zheng, R. Hu, and B. Ren, Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews, 2018. 118(10): p. 4946-4980. 24. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter, 1992. 4(5): p. 1143-1212. 25. A. Campion and P. Kambhampati, Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250. 26. P. Kambhampati, C. Child, M.C. Foster, and A. Campion, On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. The Journal of chemical physics, 1998. 108(12): p. 5013-5026. 27. E.C. Le Ru, E. Blackie, M. Meyer, and P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803. 28. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, A review on surface-enhanced Raman scattering. Biosensors, 2019. 9(2): p. 1-99. 29. R. Parsons, Comprehensive treatise of electrochemistry (experimental method in electrochemistry and electrodes: experimental techniques.). Plenum press, 1986. 8-9: p. 411-414. 30. Z.Q. Tian, B. Ren, and D.Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. 2002, journal of physical chemistry b. p. 9463-9483. 31. Z.Q. Tian, B. Ren, J.F. Li, and Z.L. Yang, Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chemical Communications, 2007(34): p. 3514-3534. 32. J.O'm Bockris, B.E. Conway, E. Yearger, and R.E. White, Comprehensive Treatise Electrochemistry. 1981. 3: p. 521-535. 33. R.J. Gale, Spectroelectrochemistry: theory and practice. 1988. 1: p. 263-344. 34. J.R. Lombardi and R.L. Birke, Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. The Journal of chemical physics, 2007. 126(24): p. 2447091-2447099. 35. D.Y. Wu, J.F. Li, B. Ren, and Z.Q. Tian, Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews, 2008. 37(5): p. 1025-1041. 36. R.J. Gale, Spectroelectrochemistry: theory and practice. 1988, Springer Science & Business Media: New York. p. 263-344. 37. S. Lecomte, P. Hildebrandt, and T. Soulimane, The electron transfer dynamics of cytochrome c 552 from Thermus thermophilus probed by time-resolved surface enhanced resonance Raman spectroscopy, in Spectroscopy of Biological Molecules: New Directions. 1999, Springer. p. 103-106. 38. X. Qian, X.H. Peng, D.O. Ansari, G.Q. Yin, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, and S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology, 2008. 26(1): p. 83-90. 39. B. Greene, D. Alhatab, C. Pye, and C. Brosseau, Electrochemical-Surface Enhanced Raman Spectroscopic (EC-SERS) Study of 6-Thiouric Acid: A Metabolite of the Chemotherapy Drug Azathioprine. The Journal of Physical Chemistry C, 2017. 121(14): p. 8084-8090. 40. T.P. Lynk, C.S. Sit, and C.L. Brosseau, Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Analytical chemistry, 2018. 90(21): p. 12639-12646. 41. S.D. Bindesri, D.S. Alhatab, and C.L. Brosseau, Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics. Analyst, 2018. 143(17): p. 4128-4135. 42. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Letters, 2005. 5(3): p. 515-518. 43. P. Raveendran, J. Fu, and S.L. Wallen, A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chemistry, 2006. 8(1): p. 34-38. 44. J. Krajczewski and A. Kudelski, Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Frontiers in Chemistry, 2019. 7: p. 1-6. 45. J. Oosterlaan, H.M. Geurts, D.L. Knol, and J.A. Sergeant, Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry research, 2005. 134(1): p. 1-10. 46. M. Vogeser, J. Groetzner, C. Küpper, and J. Briegel, The serum cortisol: cortisone ratio in the postoperative acute-phase response. Hormone Research in Paediatrics, 2003. 59(6): p. 293-296. 47. C.E. Van, K. Wierckx, T. Fiers, H. Segers, E. Vandersypt, and J. Kaufman, Salivary cortisol and testosterone: a comparison of salivary sample collection methods in healthy controls, in 13th European Congress of Endocrinology. 2011. p. 355. 48. M. Sekar, R. Sriramprabha, P.K. Sekhar, S. Bhansali, N. Ponpandian, M. Pandiaraj, and C. Viswanathan, Towards Wearable Sensor Platforms for the Electrochemical Detection of Cortisol. Journal of The Electrochemical Society, 2020. 167(6): p. 067508-067523. 49. S. Sakihara, K. Kageyama, Y. Oki, M. Doi, Y. Iwasaki, S. Takayasu, T. Moriyama, K. Terui, T. Nigawara, and Y. Hirata, Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of Cushing’s syndrome. Endocrine journal, 2010. 57(4): p. 331-337. 50. S.G. Penn, L. He, and M.J. Natan, Nanoparticles for bioanalysis. Current Opinion in Chemical Biology, 2003. 7(5): p. 609-615. 51. N.A. Masdor, Z. Altintas, and I.E. Tothill, Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni. Chemosensors, 2017. 5(2): p. 15. 52. S.K. Arya, A. Dey, and S. Bhansali, Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosensors & Bioelectronics, 2011. 28(1): p. 166-173. 53. S.P. Xu, X.H. Ji, W.Q. Xu, X.L. Li, L.Y. Wang, Y.B. Bai, B. Zhao, and Y. Ozaki, Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst, 2004. 129(1): p. 63-68. 54. A. Wieckowski, Interfacial electrochemistry: theory: experiment, and applications. 1999. 1(1): p. 131-146. 55. A. Kumar, S. Aravamudhan, M. Gordic, S. Bhansali, and S.S. Mohapatra, Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized nanowire. Biosensors Bioelectronics, 2007. 22(9-10): p. 2138-2144. 56. R.C. Stevens, S.D. Soelberg, S. Near, and C.E. Furlong, Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Analytical chemistry, 2008. 80(17): p. 6747-6751. 57. S.K. Pasha, A. Kaushik, A. Vasudev, S.A. Snipes, and S. Bhansali, Electrochemical immunosensing of saliva cortisol. Journal of The Electrochemical Society, 2013. 161(2): p. B3077-B3082. 58. X. Liu, S.P. Hsu, W.C. Liu, Y.M. Wang, X. Liu, C.S. Lo, Y.C. Lin, S.C. Nabilla, Z. Li, and Y. Hong, Salivary electrochemical cortisol biosensor based on tin disulfide Nanoflakes. Nanoscale research letters, 2019. 14(1): p. 1-9. 59. T.J. Moore and B. Sharma, Direct Surface Enhanced Raman Spectroscopic Detection of Cortisol at Physiological Concentrations. Analytical Chemistry, 2019. 92(2): p. 2052-2057. 60. A.J. Steckl and P. Ray, Stress biomarkers in biological fluids and their point-of-use detection. ACS sensors, 2018. 3(10): p. 2025-2044. 61. D. Appel, R.D. Schmid, C.-A. Dragan, M. Bureik, and V.B. Urlacher, A fluorimetric assay for cortisol. Analytical bioanalytical chemistry, 2005. 383(2): p. 182-186. 62. R. Gatti, E. Cappellin, B. Zecchin, G. Antonelli, P. Spinella, F. Mantero, and E.F. De Palo, Urinary high performance reverse phase chromatography cortisol and cortisone analyses before and at the end of a race in elite cyclists. Journal of Chromatography B, 2005. 824(1-2): p. 51-56. 63. N. Suda, H. Sunayama, Y. Kitayama, Y. Kamon, and T. Takeuchi, Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. Royal Society open science, 2017. 4(8): p. 1-10. 64. S.K. Arya, G. Chornokur, M. Venugopal, and S. Bhansali, Antibody functionalized interdigitated μ-electrode (IDμE) based impedimetric cortisol biosensor. Analyst, 2010. 135(8): p. 1941-1946. 65. A. Apilux, S. Rengpipat, W. Suwanjang, and O. Chailapakul, Development of competitive lateral flow immunoassay coupled with silver enhancement for simple and sensitive salivary cortisol detection. Journal of EXCLI 2018. 17: p. 1198-1209.
|