(3.239.33.139) 您好!臺灣時間:2021/03/05 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈艾瑞
研究生(外文):Erik Budi Santiko
論文名稱:負載CuO / ZnO的納米纖維素膜對二氧化碳的光催化轉化
論文名稱(外文):Photocatalytic Reduction of Carbon Dioxide on CuO/ZnO-Loaded Nanocellulose Films
指導教授:今榮東洋子
指導教授(外文):Toyoko Imae
口試委員:林麗瓊邱昱誠今榮東洋子
口試委員(外文):Li-Chyong ChenYu-Cheng ChiuToyoko Imae
口試日期:2020-01-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:35
中文關鍵詞:光催化二氧化碳還原氧化銅氧化鋅樹枝狀聚合物納米纖維素膜
外文關鍵詞:photocatalysiscarbon dioxide reductioncopper oxidezinc oxidedendrimernanocellulose film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究了樹枝狀大分子摻雜的氧化銅(CuO)和負載氧化鋅(ZnO)的納米纖維素膜在二氧化碳光還原方面的性能。使用多元醇方法合成氧化鋅以獲得 20 nm的尺寸。綠色的氧化銅團簇摻雜到氧化鋅表面,以提高效率並減少電洞的複合。將樹狀聚合物摻雜到CuO和ZnO表面上以增強二氧化碳的捕獲。將催化劑加載到納米纖維素中,並乾燥成類似於天然葉片的薄膜。產品仍將保留在薄膜內,並且可以通過將薄膜分散到水中來輕鬆檢測。在氣相中使用間歇式反應器進行二氧化碳的光催化還原。光催化劑懸掛在反應器內,滴入少量的水。摻雜在負載ZnO的納米纖維素膜(Den-CuO#5-ZnO / TOCNF)上的(5 mM Cu2+ 前體)樹枝狀CuO將二氧化碳轉化為甲醇,並且在沒有CuO的情況下將甲醇轉化為兩倍以上,在6小時內為 484±75 µmole。
The performance of dendrimer doped copper oxide (CuO) and zinc oxide (ZnO) loaded nanocellulose film on carbon dioxide photoreduction is studied. Zinc oxide is synthesized using polyol method to gain 20 nm size. Green color copper oxide nanocluster is doped into zinc oxide surface to increase efficiency and reduce electron-hole recombination. Dendrimer is doped onto the CuO and ZnO surface to enhance the carbon dioxide capture. The catalyst is loaded into nanocellulose and dried as film mimicking natural leaves. The products will be still inside the film framework and easily detect by dispersing the film into water. Photocatalytic reduction of carbon dioxide is using batch reactor in gas phase. Photocatalyst is hung inside the reactor with little drop wise of the water. Dendrimer-CuO (5 mM Cu2+ precursor) doped onto ZnO loaded nanocellulose film (Den-CuO#5-ZnO/TOCNF) converted carbon dioxide into methanol and more than two times of system without CuO, 484 ±75 µmole in 6 hours.
Abstract iv
Acknowledgement vi
List of Figures viii
List of Tables ix
CHAPTER I INTRODUCTION 1
1.1. Carbon Dioxide as Major Pollutant for Greenhouse Effect 1
1.2. Photocatalysis of Carbon Dioxide 3
1.3. Converting CO2 into More Valuable Compounds by Photocatalyst 5
1.4. Materials of Photocatalyst and Its Support 7
1.4.1. Zinc oxide (ZnO) 7
1.4.2. Copper oxide nanocluster 7
1.4.3. Surface modification of the photocatalyst 8
1.4.4. TEMPO-oxidized cellulose nanofiber film (TOCNF) as catalyst support 10
1.5. Motivation/Objective 12
CHAPTER II METHOD OF EXPERIMENTS 13
2.1. Materials 13
2.2 Synthesis Photocatalyst 13
2.2.1. Synthesis the photocatalyst (Den-CuO-ZnO) 13
2.2.2. Characterization of Photocatalyst (CuO-ZnO) 14
2.2.3. Synthesis of TEMPO-oxidized cellulose nanofiber as catalyst support 14
2.3. Photocatalytic Reaction 14
2.4. Detection of the Products 15
CHAPTER III RESULT AND DISCUSSION 16
3.1. Characterization of Photocatalysts 16
3.1.2. Effect of concentration for [Cu2(OH)3NO3] size 20
3.1.3. FTIR of photocatalysts (ZnO, CuO#1-ZnO and CuO#5-ZnO) 21
3.1.4. XRD spectrum of precursor and photocatalyst 23
3.1.5. UV-Visible spectrum of photocatalysts 24
3.1.6. Photoluminescence spectrum of photocatalysts 25
3.2. Photocatalytic Reaction 25
CHAPTER IV CONCLUSION 32
REFERENCES 33
[1] NOAA. (2019, June 4). Carbon dioxide levels in atmosphere hit record high in May: Monthly average surpassed 414 ppm at NOAA's Mauna Loa Observatory in Hawaii. ScienceDaily. Retrieved July 25, 2019 from www.sciencedaily.com/releases/2019/06/190604140109.htm
[2] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2 : a review. Applied Surface Science, 392, 658–686. https://doi.org/10.1016/j.apsusc.2016.09.093
[3] Muthuraj, R., & Mekonnen, T. (2018). Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer, 145(May), 348–373. https://doi.org/10.1016/j.polymer.2018.04.078
[4] Zheng, Y., Zhang, W., Li, Y., Chen, J., Yu, B., Wang, J., … Zhang, J. (2017). Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 40(April), 512–539. https://doi.org/10.1016/j.nanoen.2017.08.049
[5] Shah, K. J., & Imae, T. (2017). Photoinduced enzymatic conversion of CO2 gas to solar fuel on functional cellulose nanofiber films. Journal of Materials Chemistry A, 5(20), 9691–9701. https://doi.org/10.1039/c7ta01861d
[6] Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. https://doi.org/10.1016/B978-0-12-810499-6.00006-1
[7] Tamirat, A. G., Rick, J., Dubale, A. A., Su, W. N., & Hwang, B. J. (2016). Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horizons, 1(4), 243–267. https://doi.org/10.1039/c5nh00098j
[8] Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5). https://doi.org/10.1088/1361-6528/aa9fb1
[9] Shown, I., Hsu, H. C., Chang, Y. C., Lin, C. H., Roy, P. K., Ganguly, A., … Chen, K. H. (2014). Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by cu-nanoparticle decorated graphene oxide. Nano Letters, 14(11), 6097–6103. https://doi.org/10.1021/nl503609v
[10] Cheng, M., Yang, S., Chen, R., Zhu, X., Liao, Q., & Huang, Y. (2017). Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2. International Journal of Hydrogen Energy, 42(15), 9722–9732. https://doi.org/10.1016/j.ijhydene.2017.01.126
[11] Xiang, T., Xin, F., Zhao, C., Lou, S., Qu, W., Wang, Y., … Yin, X. (2018). Fabrication of nano copper oxide evenly patched on cubic sodium tantalate for oriented photocatalytic reduction of carbon dioxide. Journal of Colloid and Interface Science, 518, 34–40. https://doi.org/10.1016/j.jcis.2018.01.109
[12] Bae, K. L., Kim, J., Lim, C. K., Nam, K. M., & Song, H. (2017). Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nature Communications, 8(1), 1–8. https://doi.org/10.1038/s41467-017-01165-4
[13] Lashgari, M., Soodi, S., & Zeinalkhani, P. (2017). Photocatalytic back-conversion of CO2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: Artificial photosynthesis. Journal of CO2 Utilization, 18, 89–97. https://doi.org/10.1016/j.jcou.2017.01.017
[14] Yendrapati Taraka, T. P., Gautam, A., Jain, S. L., Bojja, S., & Pal, U. (2019). Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH. Journal of CO2 Utilization, 31(March), 207–214. https://doi.org/10.1016/j.jcou.2019.03.012
[15] Liao, Y., Hu, Z., Gu, Q., & Xue, C. (2015). Amine-functionalized ZnO nanosheets for efficient CO2 capture and photoreduction. Molecules, 20(10), 18847–18855. https://doi.org/10.3390/molecules201018847
[16] Kumar, P., Joshi, C., Barras, A., Sieber, B., Addad, A., Boussekey, L., … Jain, S. L. (2017). Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Applied Catalysis B: Environmental, 205, 654–665. https://doi.org/10.1016/j.apcatb.2016.11.060
[17] Zhang, Q., Dandeneau, C. S., Zhou, X., & Cao, C. (2009). ZnO nanostructures for dye-sensitized solar cells. Advanced Materials, 21(41), 4087–4108. https://doi.org/10.1002/adma.200803827
[18] Efa, M. T., & Imae, T. (2018). Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers, 92, 112–117. https://doi.org/10.1016/j.jtice.2018.02.007
[19] Nakamura, T., Mochidzuki, Y., & Sato, S. (2008). Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution. Journal of Materials Research, 23(4), 968–974. https://doi.org/10.1557/jmr.2008.0115
[20] Reece, Jane B., et al. (2014). Campbell Biology. Tenth edition. Boston: Pearson.
[21] Shi, F. and Morreale, Bryan. (2015). Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier.
[22] Shah, K. J., Imae, T., Ujihara, M., Huang, S. J., Wu, P. H., & Liu, S. Bin. (2017). Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3 and CO2. Chemical Engineering Journal, 312, 118–125. https://doi.org/10.1016/j.cej.2016.11.125
[23] Karolczak, K., Rozalska, S., Wieczorek, M., Labieniec-Watala, M., & Watala, C. (2012). Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats. International Journal of Pharmaceutics, 436(1–2), 508–518. https://doi.org/10.1016/j.ijpharm.2012.06.033
[24] Isogai, A. (2018). Development of completely dispersed cellulose nanofibers. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 94(4), 161–179. https://doi.org/10.2183/pjab.94.012
[25] Sheppard, S. E., & Newsome, P. T. (1932). The sorption of alcohol vapors by cellulose and cellulose acetates. Journal of Physical Chemistry, 36(8), 2306–2318. https://doi.org/10.1021/j150338a017
[26] Krishnakumar, B., & Imae, T. (2014). Chemically modified novel pamam-zno nanocomposite: Synthesis, characterization and photocatalytic activity. Applied Catalysis A: General, 486, 170–175. https://doi.org/10.1016/j.apcata.2014.08.010
[27] Zhan, Y. Y., Zhang, Y., Li, Q. M., & Du, X. Z. (2010). A novel visible spectrophotometric method for the determination of methanol using sodium nitroprusside as spectroscopic probe. Journal of the Chinese Chemical Society, 57(2), 230–235. https://doi.org/10.1002/jccs.201000035
[28] Malakootian, M., Hashemi, M., Toolabi, A., & Nasiri, A. (2018). Investigation of nickel removal using poly(amidoamine) generation 4 dendrimer (PAMAM G4) from aqueous solutions. Journal of Engineering Research, 6(2), 13–23.
[29] Anandan, S., Wu, J. J., & Ashokkumar, M. (2015). Sonochemical Synthesis of Layered Copper Hydroxy Nitrate Nanosheets. ChemPhysChem, 16(16), 3389–3391. https://doi.org/10.1002/cphc.201500629
[30] Hasan, M. R., Abd Hamid, S. B., Basirun, W. J., Meriam Suhaimy, S. H., & Che Mat, A. N. (2015). A sol-gel derived, copper-doped, titanium dioxide-reduced graphene oxide nanocomposite electrode for the photoelectrocatalytic reduction of CO2 to methanol and formic acid. RSC Advances, 5(95), 77803–77813. https://doi.org/10.1039/c5ra12525a
[31] Fu, F. Y., Shown, I., Li, C. S., Raghunath, P., Lin, T. Y., Billo, T., … Chen, K. H. (2019). KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction [Research-article]. ACS Applied Materials and Interfaces, 11(28), 25186–25194. https://doi.org/10.1021/acsami.9b06264
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔