|
[1] NOAA. (2019, June 4). Carbon dioxide levels in atmosphere hit record high in May: Monthly average surpassed 414 ppm at NOAA's Mauna Loa Observatory in Hawaii. ScienceDaily. Retrieved July 25, 2019 from www.sciencedaily.com/releases/2019/06/190604140109.htm [2] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2 : a review. Applied Surface Science, 392, 658–686. https://doi.org/10.1016/j.apsusc.2016.09.093 [3] Muthuraj, R., & Mekonnen, T. (2018). Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer, 145(May), 348–373. https://doi.org/10.1016/j.polymer.2018.04.078 [4] Zheng, Y., Zhang, W., Li, Y., Chen, J., Yu, B., Wang, J., … Zhang, J. (2017). Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 40(April), 512–539. https://doi.org/10.1016/j.nanoen.2017.08.049 [5] Shah, K. J., & Imae, T. (2017). Photoinduced enzymatic conversion of CO2 gas to solar fuel on functional cellulose nanofiber films. Journal of Materials Chemistry A, 5(20), 9691–9701. https://doi.org/10.1039/c7ta01861d [6] Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. https://doi.org/10.1016/B978-0-12-810499-6.00006-1 [7] Tamirat, A. G., Rick, J., Dubale, A. A., Su, W. N., & Hwang, B. J. (2016). Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horizons, 1(4), 243–267. https://doi.org/10.1039/c5nh00098j [8] Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5). https://doi.org/10.1088/1361-6528/aa9fb1 [9] Shown, I., Hsu, H. C., Chang, Y. C., Lin, C. H., Roy, P. K., Ganguly, A., … Chen, K. H. (2014). Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by cu-nanoparticle decorated graphene oxide. Nano Letters, 14(11), 6097–6103. https://doi.org/10.1021/nl503609v [10] Cheng, M., Yang, S., Chen, R., Zhu, X., Liao, Q., & Huang, Y. (2017). Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2. International Journal of Hydrogen Energy, 42(15), 9722–9732. https://doi.org/10.1016/j.ijhydene.2017.01.126 [11] Xiang, T., Xin, F., Zhao, C., Lou, S., Qu, W., Wang, Y., … Yin, X. (2018). Fabrication of nano copper oxide evenly patched on cubic sodium tantalate for oriented photocatalytic reduction of carbon dioxide. Journal of Colloid and Interface Science, 518, 34–40. https://doi.org/10.1016/j.jcis.2018.01.109 [12] Bae, K. L., Kim, J., Lim, C. K., Nam, K. M., & Song, H. (2017). Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nature Communications, 8(1), 1–8. https://doi.org/10.1038/s41467-017-01165-4 [13] Lashgari, M., Soodi, S., & Zeinalkhani, P. (2017). Photocatalytic back-conversion of CO2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: Artificial photosynthesis. Journal of CO2 Utilization, 18, 89–97. https://doi.org/10.1016/j.jcou.2017.01.017 [14] Yendrapati Taraka, T. P., Gautam, A., Jain, S. L., Bojja, S., & Pal, U. (2019). Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH. Journal of CO2 Utilization, 31(March), 207–214. https://doi.org/10.1016/j.jcou.2019.03.012 [15] Liao, Y., Hu, Z., Gu, Q., & Xue, C. (2015). Amine-functionalized ZnO nanosheets for efficient CO2 capture and photoreduction. Molecules, 20(10), 18847–18855. https://doi.org/10.3390/molecules201018847 [16] Kumar, P., Joshi, C., Barras, A., Sieber, B., Addad, A., Boussekey, L., … Jain, S. L. (2017). Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Applied Catalysis B: Environmental, 205, 654–665. https://doi.org/10.1016/j.apcatb.2016.11.060 [17] Zhang, Q., Dandeneau, C. S., Zhou, X., & Cao, C. (2009). ZnO nanostructures for dye-sensitized solar cells. Advanced Materials, 21(41), 4087–4108. https://doi.org/10.1002/adma.200803827 [18] Efa, M. T., & Imae, T. (2018). Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers, 92, 112–117. https://doi.org/10.1016/j.jtice.2018.02.007 [19] Nakamura, T., Mochidzuki, Y., & Sato, S. (2008). Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution. Journal of Materials Research, 23(4), 968–974. https://doi.org/10.1557/jmr.2008.0115 [20] Reece, Jane B., et al. (2014). Campbell Biology. Tenth edition. Boston: Pearson. [21] Shi, F. and Morreale, Bryan. (2015). Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier. [22] Shah, K. J., Imae, T., Ujihara, M., Huang, S. J., Wu, P. H., & Liu, S. Bin. (2017). Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3 and CO2. Chemical Engineering Journal, 312, 118–125. https://doi.org/10.1016/j.cej.2016.11.125 [23] Karolczak, K., Rozalska, S., Wieczorek, M., Labieniec-Watala, M., & Watala, C. (2012). Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats. International Journal of Pharmaceutics, 436(1–2), 508–518. https://doi.org/10.1016/j.ijpharm.2012.06.033 [24] Isogai, A. (2018). Development of completely dispersed cellulose nanofibers. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 94(4), 161–179. https://doi.org/10.2183/pjab.94.012 [25] Sheppard, S. E., & Newsome, P. T. (1932). The sorption of alcohol vapors by cellulose and cellulose acetates. Journal of Physical Chemistry, 36(8), 2306–2318. https://doi.org/10.1021/j150338a017 [26] Krishnakumar, B., & Imae, T. (2014). Chemically modified novel pamam-zno nanocomposite: Synthesis, characterization and photocatalytic activity. Applied Catalysis A: General, 486, 170–175. https://doi.org/10.1016/j.apcata.2014.08.010 [27] Zhan, Y. Y., Zhang, Y., Li, Q. M., & Du, X. Z. (2010). A novel visible spectrophotometric method for the determination of methanol using sodium nitroprusside as spectroscopic probe. Journal of the Chinese Chemical Society, 57(2), 230–235. https://doi.org/10.1002/jccs.201000035 [28] Malakootian, M., Hashemi, M., Toolabi, A., & Nasiri, A. (2018). Investigation of nickel removal using poly(amidoamine) generation 4 dendrimer (PAMAM G4) from aqueous solutions. Journal of Engineering Research, 6(2), 13–23. [29] Anandan, S., Wu, J. J., & Ashokkumar, M. (2015). Sonochemical Synthesis of Layered Copper Hydroxy Nitrate Nanosheets. ChemPhysChem, 16(16), 3389–3391. https://doi.org/10.1002/cphc.201500629 [30] Hasan, M. R., Abd Hamid, S. B., Basirun, W. J., Meriam Suhaimy, S. H., & Che Mat, A. N. (2015). A sol-gel derived, copper-doped, titanium dioxide-reduced graphene oxide nanocomposite electrode for the photoelectrocatalytic reduction of CO2 to methanol and formic acid. RSC Advances, 5(95), 77803–77813. https://doi.org/10.1039/c5ra12525a [31] Fu, F. Y., Shown, I., Li, C. S., Raghunath, P., Lin, T. Y., Billo, T., … Chen, K. H. (2019). KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction [Research-article]. ACS Applied Materials and Interfaces, 11(28), 25186–25194. https://doi.org/10.1021/acsami.9b06264
|