(54.236.58.220) 您好!臺灣時間:2021/03/08 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:THANH-THAM TRAN
研究生(外文):THANH-THAM TRAN
論文名稱:Fluoride and Boron Removal by Using Waste Oyster Shell
論文名稱(外文):Fluoride and Boron Removal by Using Waste Oyster Shell
指導教授:劉志成劉志成引用關係
指導教授(外文):Jhy-Chern Liu
口試委員:顧洋王孟菊陳嘉明李奇旺
口試委員(外文):Young KuMeng-Jiy WangJia-Ming ChernChi-Wang Li
口試日期:2020-01-14
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:118
中文關鍵詞:吸附氟化物牡蠣殼熱預處理
外文關鍵詞:Adsorptionboronfluorideoyster shellthermal pretreatmentwater
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的在於再利用廢牡蠣殼作為氟和硼吸附之吸附劑,並研究熱處理對牡蠣殼基本性質以及氟和硼的去除效率的影響。將乾淨的牡蠣殼廢料樣品分別於500°C下2小時(OS500-2h),700°C下0.5小時(OS700-0.5小時)和2小時(OS700-2h)進行預處理,並使用預處理之牡蠣殼樣品去除氟和硼。我們利用比表面積與孔隙度分析儀(BET),傅里葉轉換紅外光譜(FTIR),X射線衍射(XRD),熱重力分析(TGA)和X-射線光電子光譜(XPS)分析未負載和負載的吸附劑的特徵。
研究結果顯示,以預熱處理使牡蠣殼樣品之純度提高,導致pHIEP向鹼性範圍偏移,而使得牡蠣殼樣品的去除效率提高。對於除氟,實驗符合Langmuir等溫線模型,牡蠣殼OS700-2h表現出最好的吸附性能,具有最大吸附量,Qo , 6.14 mg/g,並在牡蠣殼表面形成氟化鈣 (CaF2) 沉澱。而對於除硼,牡蠣殼OS700-0.5h觀察到具有最大吸附量0.39 mg/g,並形成硼酸鈣 (Ca2B2O5) 沉澱。在氟化物和硼的吸附程序中,pH 7的去除機制主要是沉澱程序,其中牽涉到預熱處理產生的氧化鈣 (CaO) 的存在。總而言之,廢牡蠣殼具有再利用為低成本吸附劑之可行性,可從水中去除氟化物和硼酸鹽。
This study focused on the utilization of waste oyster shell as adsorbents for fluoride and boron removal. The effects of thermal pretreatment on the properties of oyster shells and on the removal efficiency of fluoride and boron removal were investigated. Waste oyster shell samples were pretreated at 500oC in 2 h (OS500-2h), 700oC in 0.5 h (OS700-0.5 h) and 2 h (OS700-2h). The characterization of unloaded and loaded adsorbents were analyzed by BET, FTIR, XRD, TGA and XPS. The experimental results fitted well with the Langmuir adsorption model. Results showed that thermal pretreatment led to the higher purity of preheated oyster shell samples and the shift of pHIEP to more alkaline range, resulted in the enhancement of the removal efficiency of oyster shell samples. For fluoride removal, the oyster shell OS700-2h showed the best performance, having the maximum adsorption capacity of Qo at 6.14 mg/g. The CaF2 precipitate formed on the oyster shell surfaces. For boron removal, the maximum adsorption capacity of Qo at 0.39 mg/g was observed for oyster shell OS700-0.5h, and the precipitate of calcium borate (Ca2B2O5) formed as well. For both fluoride and boron removal, the main mechanism was precipitation process for ≤ pH 7, which involved the presence of CaO. In general, the waste oyster shell could be a potential low-cost adsorbent for fluoride and borate removal from water.
摘要 I
Abstract II
Acknowledgement III
Contents IV
List of Figures VII
List of Tables XI
CHAPTER 1 1
INTRODUCTION 1
1.1. Background 1
1.2. Objectives 2
CHAPTER 2 3
LITERATURE REVIEW 3
2.1. Fluoride and boron 3
2.2. Impacts of fluoride and boron on human health 4
2.3. Removal technology of fluoride and boron 7
2.4. Reuse of oyster shell as an adsorbent 13
CHAPTER 3 15
MATERIALS AND METHODS 15
3.1. Materials 15
3.2. Instruments 16
3.3. Experimental methods 17
3.3.1. Preparation of oyster shell 17
3.3.2. Adsorption isotherm of fluoride and boron 17
3.3.3. Characterization of oyster shell 18
3.3.3.1. BET surface area 18
3.3.3.2. X-ray diffraction (XRD) 19
3.3.3.3. Thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) 19
3.3.3.4. Fourier transform infrared spectroscopy (FTIR) 19
3.3.3.5. Zeta potential measurement 20
3.3.3.6. X-ray photoelectron spectroscopy (XPS) 20
3.3.4. Equilibrium modeling 20
3.4. Experimental flow chart 22
CHAPTER 4 23
RESULTS AND DISCUSSION 23
4.1. Characterization of oyster shell and preheated oyster shell 23
4.1.1. Fourier transforms infrared spectroscopy (FTIR) analysis 23
4.1.2. X-ray diffraction (XRD) analysis 26
4.1.3. Thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) 27
4.1.4. Brunauer-Emmett-Teller (BET) analysis 29
4.1.5. Zeta potential 31
4.1.6. X-ray photoelectron spectroscopy (XPS) 32
4.2. Removal of fluoride 38
4.2.1. Adsorption isotherm study 38
4.2.2. Characterization of fluoride loaded oyster shell samples 42
4.3. Removal of boron 55
4.3.1. Adsorption isotherm study 55
4.3.2. Characterization of boron loaded oyster shell samples 59
4.4. Comparison with other adsorbents 71
CHAPTER 5 77
CONCLUSIONS AND RECOMMENDATIONS 77
5.1. Conclusions 77
5.2. Recommendations 78
REFERENCES R-1
APPENDIX A A-1
APPENDIX B B-1
Abri, A., Tajbakhsh, M., Sadeghi, A., 2018. Adsorption of fluoride on a chitosan-based magnetic nanocomposite: Equilibrium and kinetics studies. Water Science and Technology: Water Supply 19, ws2018050.
Agmon, N., 1996. Hydrogen bonds, water rotation and proton mobility. Journal de Chimie Physique. 93, 1714-1736.
Al-Ghouti, M., Salih, N., 2018. Application of eggshell wastes for boron remediation from water. Journal of Molecular Liquids 256.
Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., Watanabe, M., 2015. Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmetal Management 150, 103-110.
Aoun, A., Darwiche, F., Al Hayek, S., Doumit, J., 2018. The fluoride debate: The pros and cons of fluoridation. Preventive Nutrition and Food Science 23, 171-180.
Balan, E., Pietrucci, F., Gervais, C., Blanchard, M., Schott, J., Gaillardet, J., 2016. First-principles study of boron speciation in calcite and aragonite. Geochimica et Cosmochimica Acta 193, 119-131.
Bhaumik, R., Mondal, N., Das, B., Pal, K., Das, C., Banerjee, A., Datta, J., 2012. Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: Equilibrium, kinetic and thermodynamic studies. Journal of Chemistry 9.
Budyanto, S., Kuo, Y.-L., Liu, J.C., 2015. Adsorption and precipitation of fluoride on calcite nanoparticles: A spectroscopic study. Separation and Purification Technology 150, 325-331.
Bursali, EA., Seki, Y., Seyhan, S., Delener, M., Yurdakoç, M., 2011. Synthesis of chitosan beads as boron sorbents. Journal of Applied Polymer Science 122, 657-665.
Cai, H., Xu, L., Chen, G., Peng, C., Ke, F., Liu, Z., Li, D., Zhang, Z., Wan, X., 2016. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Applied Surface Science 375, 74-84.
Chang, H.Y.H., Kuo, Y.L., Liu, J.C., 2019. Fluoride at waste oyster shell surfaces - Role of magnesium. The Science of the Total Environment 652, 1331-1338.
Chaudhary, V., Prasad, S., 2015. Rapid removal of fluoride from aqueous media using activated dolomite. Analytical Methods 7, 8304-8314.
Chen, T., Wang, Q., Lyu, J., Bai, P., Guo, X., 2020. Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: An adsorption and isotopic separation study. Separation and Purification Technology 231, 115930.
Chen, Y., Xu, J., Lv, Z., Xie, R., Huang, L., Jiang, J., 2018. Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. Journal of Environmetal Management 217, 646-653.
Chieng, H.J., Chong, M.F., 2013. Boron adsorption on palm oil mill boiler (POMB) ash impregnated with chemical compounds. Industrial & Engineering Chemistry Research 52, 14658-14670.
Dan, S., Chattree, A., 2018. Sorption of fluoride using chemically modified Moringa oleifera leaves. Applied Water Science 8, 76.
Davila-Rodriguez, J.L., Escobar-Barrios, V.A., Rangel-Mendez, J.R., 2012. Removal of fluoride from drinking water by a chitin-based biocomposite in fixed-bed columns. Journal of Fluorine Chemistry 140, 99-103.
Davila-Rodriguez, J.L., Escobar-Barrios, V.A., Shirai, K., Rangel-Mendez, J.R., 2009. Synthesis of a chitin-based biocomposite for water treatment: Optimization for fluoride removal. Journal of Fluorine Chemistry 130, 718-726.
de Luna, M.D.G., Warmadewanthi, Liu, J.C., 2009. Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 347, 64-68.
Demey, H., Barron-Zambrano, J., Mhadhbi, Miloudi, H., Yang, Z., Ruiz, M., Sastre, 2019. Boron removal from aqueous solutions by using a novel alginate-based sorbent: Comparison with Al2O3 particles. Polymers 11, 1509.
Demey-Cedeño, H., Ruiz, M., Barron-Zambrano, J.A., Sastre, A.M., 2014. Boron removal from aqueous solutions using alginate gel beads in fixed-bed systems. Journal of Chemical technology and Biotechnology 89, 934-940.
DenBesten, P., Li, W., 2011. Chronic fluoride toxicity: dental fluorosis. Monographs in Oral Science 22, 81-96.
Fan, X., Parker, D.J., Smith, M.D., 2003. Adsorption kinetics of fluoride on low cost materials. Water Research 37, 4929-4937.
Galai, H., Pijolat, M., Nahdi, K., Trabelsi-Ayadi, M., 2007. Mechanism of growth of MgO and CaCO3 during a dolomite partial decomposition. Solid State Ionics 178, 1039-1047.
Guan, Z., Lv, J., Bai, P., Guo, X., 2016. Boron removal from aqueous solutions by adsorption - A review. Desalination 383, 29-37.
Irawan, C., Kuo, Y.-L., Liu, J.C., 2011a. Treatment of boron-containing optoelectronic wastewater by precipitation process. Desalination 280, 146-151.
Irawan, C., Liu, J.C., Wu, C.-C., 2011b. Removal of boron using aluminum-based water treatment residuals (Al-WTRs). Desalination 276, 322-327.
Islam, M., Patel, R.K., 2007. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime. Journal of Hazardous Materials 143, 303-310.
Jaouadi, M., Hamzaoui, A., 2019. Boron adsorption onto activated carbon and amorphous carbon prepared from sucrose dehydration. Desalination and Water Treatment 149, 150-156.
Justyna Ulatowska, Izabela Polowczyk, Anna Bastrzyk, Tomasz Koźlecki & Wojciech Sawiński (2019). Fly ash as a sorbent for boron removal from aqueous solutions: Equilibrium and thermodynamic studies. Separation Science and Technology 54, 1-9.
Khownpurk, P., Chandra-Ambhorn, W., 2019. As(III) removal under the presence of competitive anions using the calcined ground oyster shell as the adsorbent. Separation Science and Technology 55, 1-11.
Khunur, M., Risdianto, A., Mutrofin, S., Prananto, Y., 2012. Synthesis of fluorite (CaF2) crystal from gypsum waste of phosphoric acid factory in silica gel. Bulletin of Chemical Reaction Engineering and Catalysis 7, 71-77.
Kluczka, J., Pudło, W., Krukiewicz, K., 2019. Boron adsorption removal by commercial and modified activated carbons. Chemical Engineering Research and Design 147, 30-42.
Kluczka, J., Gnus, M., Kazek-Kęsik, A., Dudek, G., 2018. Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions. Polymer 150, 109-118.
Kluczka, J., Trojanowska, J., Zołotajkin, M., 2015. Utilization of fly ash zeolite for boron removal from aqueous solution. Desalination and Water Treatment 54, 1839-1849.
Kuriwada, A., Sase, T., Wang, L., Dodbiba, G., Okaya, K., Fujita, T., 2012. Boron removal and recovery by adsorbing effect of boron on thermally treated dolomite in the water containing boron ion. Resources Processing 59, 149-154.
Labidi, Djebaili, A., 2008. Studies of the mechanism of polyvinyl alcohol adsorption on the calcite/water interface in the presence of sodium oleate. Journal of Minerals and Materials Characterization and Engineering 07, 147-161.
Li, P., Liu, C., Zhang, L., Zheng, S., Zhang, Y., 2017. Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method. Ultrasonics Sonochemistry 34, 938-946.
Meenakshi, Maheshwari, R.C., 2006. Fluoride in drinking water and its removal. Journal of Hazardous Materials 137, 456-463.
Mehta, D., Mondal, P., George, S., 2016. Utilization of marble waste powder as a novel adsorbent for removal of fluoride ions from aqueous solution. Journal of Environmental Chemical Engineering 4, 932-942.
Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E., Singh, P., 2009. Review of fluoride removal from drinking water. Journal of Environmental Management 91, 67-77.
Moulder, J.F., Chastain, J., 1992. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation.
Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M., El Hamri, R., Taitai, A., 2015. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAP) using response surface methodology. Journal of Saudi Chemical Society 19, 603-615.
Nasef, M.M., Nallappan, M., Ujang, Z., 2014. Polymer-based chelating adsorbents for the selective removal of boron from water and wastewater: A review. Reactive and Functional Polymers 85, 54-68.
Ngamcharussrivichai, C., Wiwatnimit, W., Wangnoi, S., 2007. Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A: Chemical 276, 24-33.
Nielsen, F., Meacham, S., 2011. Growing evidence for human health benefits of boron. Complementary Health Practice Review 16, 169-180.
Olszak-Humienik, M., Jablonski, M., 2015. Thermal behavior of natural dolomite. Journal of Thermal Analysis and Calorimetry 119, 2239-2248.
Pizzorno, L., 2015. Nothing boring about boron. Integrative Medicine (Encinitas) 14, 35-48.
Rodriguez-Navarro, C., Kudlacz, K., Ruiz-Agudo, E., 2012. The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. American Mineralogist 97, 38-51.
Roy, S., Das, P., Sengupta, S., Manna, S., 2017. Calcium impregnated activated charcoal: Optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor. Process Safety and Environmental Protection 109, 18-29.
Ruiz, M., Tobalina, C., Demey-Cedeño, H., Barron-Zambrano, J.A., Sastre, A.M., 2013. Sorption of boron on calcium alginate gel beads. Reactive and Functional Polymers 73, 653-657.
Saldi, G.D., Noireaux, J., Louvat, P., Faure, L., Balan, E., Schott, J., Gaillardet, J., 2018. Boron isotopic fractionation during adsorption by calcite – Implication for the seawater pH proxy. Geochimica et Cosmochimica Acta 240, 255-273.
Sasaki, K., Toshiyuki, K., Ideta, K., Miki, H., Hirajima, T., Miyawaki, J., Murayama, M., Dabo, I., 2016. Removal mechanism of high concentration borate by co-precipitation with hydroxyapatite. Journal of Environmental Chemical Engineering 4, 1092-1101.
Sasaki, K., Yoshida, M., Ahmmad, B., Fukumoto, N., Hirajima, T., 2013. Sorption of fluoride on partially calcined dolomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 435, 56-62.
Shih, P.-K., Chang, W.-L., 2015. The effect of water purification by oyster shell contact bed. Ecological Engineering 77, 382-390.
Singh, J., Singh, P., Singh, A., 2016. Fluoride ions vs removal technologies: A study. Arabian Journal of Chemistry 9, 815-824.
Staszczuk, P., Stefaniak, E., Biliński, B., Szymański, E., Dobrowolski, R., Jayaweera, S.A.A., 1997. Investigations on the adsorption properties and porosity of natural and thermally treated dolomite samples. Powder Technology 92, 253-257.
Talat, M., Mohan, S., Dixit, V., Singh, D.K., Hasan, S.H., Srivastava, O.N., 2018. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundwater for Sustainable Development 7, 48-55.
Valverde, J., Perejon, A., Medina-Carrasco, S., Pérez-Maqueda, L., 2015. Thermal decomposition of dolomite under CO2: Insights from TGA and in-situ XRD analysis. Physical Chemistry Chemical Physics 17, 30162-30176.
Wang, B., Guo, X., Bai, P., 2014. Removal technology of boron dissolved in aqueous solutions – A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects 444, 338-344.
Wang, N., Yang, C., Pan, Z., Liu, Y., Peng, S.a., 2015. Boron deficiency in woody plants: various responses and tolerance mechanisms. Frontiers in Plant Science 6, 916-916.
Wang, Y.-J., Wei, H.-Z., Jiang, S.-Y., van de Ven, T.G.M., Ling, B.-P., Li, Y.-C., Lin, Y.-B., Guo, Q., 2018. Mechanism of boron incorporation into calcites and associated isotope fractionation in a steady-state carbonate-seawater system. Applied Geochemistry 98, 221-236.
Weber, W.J., McGinley, P.M., Katz, L.E., 1991. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Research 25, 499-528.
Wei, Y.-L., Kuo, P.-J., Yin, Y.-Z., Huang, Y.-T., Chung, T.-H., Xie, X.-Q., 2018. Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials. Construction and Building Materials 172, 224-232.
Wendimu, G., Zewge, F., Mulugeta, E., 2017. Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions. Journal of Water Process Engineering 16, 123-131.
Whitford, G.M., 2011. Acute toxicity of ingested fluoride. Monographs in Oral Science 22, 66-80.
Witoon, T., 2011. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramics International 37, 3291-3298.
Wolska, J., Bryjak, M., 2013. Methods for boron removal from aqueous solutions — A review. Desalination 310, 18-24.
World Health Organization. 2011. Guidelines for drinking water quality. World Health Organization.
Yilmaz, A.E., Boncukcuoğlu, R., Bayar, S., Fil, B.A., Kocakerim, M.M., 2012. Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean Journal of Chemical Engineering 29, 1382-1387.
Yin, H., Kong, M., Tang, W., 2015. Removal of fluoride from contaminated water using natural calcium-rich attapulgite as a low-cost adsorbent. Water, Air, & Soil Pollution 226, 425.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔