|
[1] P.Zhang, T.Wang, X.Chang, J.Gong, Effective Charge Carrier Utilization in Photocatalytic Conversions, Acc. Chem. Res. 49 (2016) 911–921. [2] A.Banerjee, B.Mondal, A.Verma, V.R.Satsangi, R.Shrivastav, A.Dey, S.Dass, Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst, J. Catal. 352 (2017) 83–92. [3] T.M.Gür, S.F.Bent, F.B.Prinz, Nanostructuring materials for solar-to-hydrogen conversion, J. Phys. Chem. C. 118 (2014) 21301–21315. [4] S.J.A.Moniz, S.A.Shevlin, D.J.Martin, Z.X.Guo, J.Tang, Visible-light driven heterojunction photocatalysts for water splitting-a critical review, Energy Environ. Sci. 8 (2015) 731–759. [5] A.Fujishima, K.Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38. [6] J.Q.Li, Z.Y.Guo, D.F.Wang, H.Lui, J.Du, Z.F.Zhu, Effects of pH value on the surface morphology of BiVO4 microspheres and removal of methylene blue under visible light, J. Exp. Nanosci. 9 (2014) 616–624. [7] J.H.Kim, J.S.Lee, BiVO4-Based Heterostructured Photocatalysts for Solar Water Splitting: A Review, Energy Environ. Focus. 3 (2014) 339–353. [8] S.Xiao, H.Chen, Z.Yang, X.Long, Z.Wang, Z.Zhu, Y.Qu, S.Yang, Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO4 Photoanodes between the BiVO4 and the FTO Side Illumination, J. Phys. Chem. C. 119 (2015) 23350–23357. [9] A.G.Tamirat, J.Rick, A.A.Dubale, W.N.Su, B.J.Hwang, Using hematite for photoelectrochemical water splitting: A review of current progress and challenges, Nanoscale Horizons. 1 (2016) 243–267. [10] Y.Liang, T.Tsubota, L.P.A.Mooij, R.Van DeKrol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C. 115 (2011) 17594–17598. [11] L.Xu, Y.Wei, W.Guo, Y.Guo, Y.Guo, One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene co-doped BiVO4 ternary systems, Appl. Surf. Sci. 332 (2015) 682–693. [12] G.Li, Y.Bai, W.F.Zhang, Difference in valence band top of BiVO4 with different crystal structure, Mater. Chem. Phys. 136 (2012) 930–934. [13] C.Martinez Suarez, S.Hernández, N.Russo, BiVO4 as photocatalyst for solar fuels production through water splitting: A short review, Appl. Catal. A Gen. 504 (2015) 158–170. [14] S.Kohtani, M.Koshiko, A.Kudo, K.Tokumura, Y.Ishigaki, A.Toriba, K.Hayakawa, R.Nakagaki, Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator, Appl. Catal. B Environ. 46 (2003) 573–586. [15] Z.Zhao, Z.Li, Z.Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys. 13 (2011) 4746–4753. [16] Z.F.Huang, L.Pan, J.J.Zou, X.Zhang, L.Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress, Nanoscale. 6 (2014) 14044–14063. [17] K.R.Tolod, S.Hernández, N.Russo, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: Top-performing photoanodes and scale-up challenges, Catalysts. 7 (2017). [18] H.She, P.Yue, X.Ma, J.Huang, L.Wang, Q.Wang, Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation, Appl. Catal. B Environ. 263 (2020) 118280. [19] B.E.Wu, C.Y.Chiang, Photochemical metal organic deposition of FeOx catalyst on BiVO4 for improving solar-driven water oxidation efficiency, J. Taiwan Inst. Chem. Eng. 80 (2017) 1014–1021. [20] D.Ressnig, R.Kontic, G.R.Patzke, Morphology control of BiVO4 photocatalysts: PH optimization vs. self-organization, Mater. Chem. Phys. 135 (2012) 457–466. [21] D.Li, Y.Liu, W.Shi, C.Shao, S.Wang, C.Ding, T.Liu, F.Fan, J.Shi, C.Li, Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation, ACS Energy Lett. 4 (2019) 825–831. [22] K.J.McDonald, K.S.Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, Energy Environ. Sci. 5 (2012) 8553–8557. [23] J.S.Yang, J.J.Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting, Nano Energy. 32 (2017) 232–240. [24] S.J.Hong, S.Lee, J.S.Jang, J.S.Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci. 4 (2011) 1781–1787. [25] J.H.Baek, B.J.Kim, G.S.Han, S.W.Hwang, D.R.Kim, I.S.Cho, H.S.Jung, BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell, ACS Appl. Mater. Interfaces. 9 (2017) 1479–1487. [26] F.F.Abdi, N.Firet, R.VandeKrol, Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping, ChemCatChem. 5 (2013) 490–496. [27] W.Luo, Z.Li, T.Yu, Z.Zou, Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4, J. Phys. Chem. C. 116 (2012) 5076–5081. [28] S.P.Berglund, A.J.E.Rettie, S.Hoang, C.B.Mullins, Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation, Phys. Chem. Chem. Phys. 14 (2012) 7065–7075. [29] C.Ding, J.Shi, D.Wang, Z.Wang, N.Wang, G.Liu, F.Xiong, C.Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys. 15 (2013) 4589–4595. [30] S.K.Choi, W.Choi, H.Park, Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes, Phys. Chem. Chem. Phys. 15 (2013) 6499–6507. [31] Y.Ma, A.Kafizas, S.R.Pendlebury, F.LeFormal, J.R.Durrant, Photoinduced Absorption Spectroscopy of CoPi on BiVO4: The Function of CoPi during Water Oxidation, Adv. Funct. Mater. 26 (2016) 4951–4960. [32] T.G.Vo, H.M.Liu, C.Y.Chiang, Highly conformal deposition of ultrathin cobalt acetate on a bismuth vanadate nanostructure for solar water splitting, Catal. Sci. Technol. 9 (2019) 4588–4597. [33] H.Luo, C.Liu, Y.Xu, C.Zhang, W.Wang, Z.Chen, An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation, Int. J. Hydrogen Energy. 44 (2019) 30160–30170. [34] B.Zhang, L.Wang, Y.Zhang, Y.Ding, Y.Bi, Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation, Angew. Chemie - Int. Ed. 57 (2018) 2248–2252. [35] L.Qian, P.Liu, L.Zhang, C.Wang, S.Yang, L.Zheng, A.Chen, H.Yang, Amorphous ferric oxide as a hole-extraction and transfer layer on nanoporous bismuth vanadate photoanode for water oxidation, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 1045–1051. [36] T.G.Vo, Y.Tai, C.Y.Chiang, Unraveling the critical effects of the preoxidation process toward the morphological evolution and intrinsic properties of novel ZnCoMn trimetallic hydroxides, Dalt. Trans. 47 (2018) 12061–12065. [37] Z.Cai, X.Bu, P.Wang, J.C.Ho, J.Yang, X.Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A. 7 (2019) 5069–5089. [38] 層狀複金屬氧化物(LDHs)作為陰離子捕獲劑之應用, (n.d.) 1–21. [39] S.P.Newman, W.Jones, Synthesis, characterization and applications of layered double hydroxides containing organic guests, New J. Chem. 22 (1998) 105–115. [40] K.H.Goh, T.T.Lim, Z.Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Res. 42 (2008) 1343–1368. [41] C.Forano, U.Costantino, V.Prévot, C.T.Gueho, Layered double hydroxides (LDH), Dev. Clay Sci. 5 (2013) 745–782. [42] M.Ogawa, S.Asai, Hydrothermal Synthesis of Layered Double, Chem. Mater. 12 (2000) 3253–3255. [43] A.C.Cardiel, K.J.McDonald, K.S.Choi, Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes, Langmuir. 33 (2017) 9262–9270. [44] D.Friebel, M.W.Louie, M.Bajdich, K.E.Sanwald, Y.Cai, A.M.Wise, M.J.Cheng, D.Sokaras, T.C.Weng, R.Alonso-Mori, R.C.Davis, J.R.Bargar, J.K.Nørskov, A.Nilsson, A.T.Bell, Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting, J. Am. Chem. Soc. 137 (2015) 1305–1313. [45] L.Qian, Z.Lu, T.Xu, X.Wu, Y.Tian, Y.Li, Z.Huo, X.Sun, X.Duan, Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis, Adv. Energy Mater. 5 (2015). [46] B.J.Trzes̈niewski, O.Diaz-Morales, D.A.Vermaas, A.Longo, W.Bras, M.T.M.Koper, W.A.Smith, In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity, J. Am. Chem. Soc. 137 (2015) 15112–15121. [47] W.He, R.Wang, L.Zhang, J.Zhu, X.Xiang, F.Li, Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls, J. Mater. Chem. A. 3 (2015) 17977–17982. [48] P.Li, X.Duan, Y.Kuang, Y.Li, G.Zhang, W.Liu, X.Sun, Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation, Adv. Energy Mater. 8 (2018) 1–8. [49] R.A.Sayed, S.E.Abd El Hafiz, N.Gamal, Y.GadelHak, W.M.A.ElRouby, Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting, J. Alloys Compd. 728 (2017) 1171–1179. [50] W.He, R.Wang, L.Zhang, J.Zhu, X.Xiang, F.Li, Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls, J. Mater. Chem. A. 3 (2015) 17977–17982. [51] D.Xu, Y.Rui, Y.Li, Q.Zhang, H.Wang, Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci. 358 (2015) 436–442. [52] K.Fan, H.Chen, Y.Ji, H.Huang, P.M.Claesson, Q.Daniel, B.Philippe, H.Rensmo, F.Li, Y.Luo, L.Sun, Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7 (2016) 1–9. [53] G.Wang, B.Wang, C.Su, D.Li, L.Zhang, R.Chong, Z.Chang, Enhancing and stabilizing Α-Fe2O3 photoanode towards neutral water oxidation: Introducing a dual-functional NiCoAl layered double hydroxide overlayer, J. Catal. 359 (2018) 287–295. [54] Q.Yang, T.Li, Z.Lu, X.Sun, J.Liu, Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction, Nanoscale. 6 (2014) 11789–11794. [55] J.Bao, Z.Wang, J.Xie, L.Xu, F.Lei, M.Guan, Y.Zhao, Y.Huang, H.Li, A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting, Chem. Commun. 55 (2019) 3521–3524. [56] Z.Lu, L.Qian, Y.Tian, Y.Li, X.Sun, X.Duan, Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts, Chem. Commun. 52 (2016) 908–911. [57] X.Wang, Y.Yang, L.Diao, Y.Tang, F.He, E.Liu, C.He, C.Shi, J.Li, J.Sha, S.Ji, P.Zhang, L.Ma, N.Zhao, CeOx -Decorated NiFe-Layered Double Hydroxide for Efficient Alkaline Hydrogen Evolution by Oxygen Vacancy Engineering, ACS Appl. Mater. Interfaces. 10 (2018) 35145–35153. [58] H.Liu, Y.Wang, X.Lu, Y.Hu, G.Zhu, R.Chen, L.Ma, H.Zhu, Z.Tie, J.Liu, Z.Jin, The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution, Nano Energy. 35 (2017) 350–357. [59] H.L.Tan, X.Wen, R.Amal, Y.H.Ng, BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity, J. Phys. Chem. Lett. 7 (2016) 1400–1405. [60] S.Dong, J.Feng, Y.Li, L.Hu, M.Liu, Y.Wang, Y.Pi, J.Sun, J.Sun, Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity, Appl. Catal. B Environ. 152–153 (2014) 413–424. [61] D.K.Ma, M.L.Guan, S.SenLiu, Y.Q.Zhang, C.W.Zhang, Y.X.He, S.M.Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity, Dalt. Trans. 41 (2012) 5581–5586. [62] A.Hankin, F.E.Bedoya-Lora, J.C.Alexander, A.Regoutz, G.H.Kelsall, Flat band potential determination: Avoiding the pitfalls, J. Mater. Chem. A. 7 (2019) 26162–26176. [63] D.Kim, Z.Zhang, K.Yong, Synergistic doping effects of a ZnO:N/BiVO4:Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems, Nanoscale. 10 (2018) 20256–20265. [64] D.A.Reddy, Y.Kim, H.S.Shim, K.A.J.Reddy, M.Gopannagari, D.Praveen Kumar, J.K.Song, T.K.Kim, Significant Improvements on BiVO4@CoPi Photoanode Solar Water Splitting Performance by Extending Visible-Light Harvesting Capacity and Charge Carrier Transportation, ACS Appl. Energy Mater. 3 (2020) 4474–4483. [65] R.Saito, Y.Miseki, K.Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chem. Commun. 48 (2012) 3833–3835. [66] 黃律維, 以甘油作為BiVO4光電極水分解反應之犧牲試劑並同時進行甘油氧化之研究, 2018, (n.d.). [67] H.R.Khan, M.Aamir, B.Akram, A.A.Tahir, M.A.Malik, M.A.Choudhary, J.Akhtar, Superior visible-light assisted water splitting performance by Fe incorporated ZnO photoanodes, Mater. Res. Bull. 122 (2020) 110627. [68] H.R.Khan, B.Akram, M.Aamir, M.A.Malik, A.A.Tahir, M.A.Choudhary, J.Akhtar, Fabrication of Ni2+ incorporated ZnO photoanode for efficient overall water splitting, Appl. Surf. Sci. 490 (2019) 302–308. [69] S.Shet, Zinc Oxide (ZnO) Nanostructures for Photoelectrochemical Water Splitting Application, (2011) 15–25. [70] M.F.Lichterman, M.R.Shaner, S.G.Handler, B.S.Brunschwig, H.B.Gray, N.S.Lewis, J.M.Spurgeon, Enhanced stability and activity for water oxidation in alkaline media with Bismuth Vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition, J. Phys. Chem. Lett. 4 (2013) 4188–4191. [71] M.Zhong, T.Hisatomi, Y.Kuang, J.Zhao, M.Liu, A.Iwase, Q.Jia, H.Nishiyama, T.Minegishi, M.Nakabayashi, N.Shibata, R.Niishiro, C.Katayama, H.Shibano, M.Katayama, A.Kudo, T.Yamada, K.Domen, Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation, J. Am. Chem. Soc. 137 (2015) 5053–5060. [72] Q.Liu, J.Huang, Y.Zhao, L.Cao, K.Li, N.Zhang, D.Yang, L.Feng, L.Feng, Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting, Nanoscale. 11 (2019) 8855–8863. [73] D.Lee, A.Kvit, K.S.Choi, Enabling Solar Water Oxidation by BiVO4 Photoanodes in Basic Media, Chem. Mater. 30 (2018) 4704–4712. [74] Y.Hu, Z.Wang, W.Liu, L.Xu, M.Guan, Y.Huang, Y.Zhao, J.Bao, H.M.Li, Novel Cobalt-Iron-Vanadium Layered Double Hydroxide Nanosheet Arrays for Superior Water Oxidation Performance, ACS Sustain. Chem. Eng. 7 (2019) 16828–16834. [75] K.N.Dinh, P.Zheng, Z.Dai, Y.Zhang, R.Dangol, Y.Zheng, B.Li, Y.Zong, Q.Yan, Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting, Small. 14 (2018) 1–9. [76] P.Li, M.Wang, X.Duan, L.Zheng, X.Cheng, Y.Zhang, Y.Kuang, Y.Li, Q.Ma, Z.Feng, W.Liu, X.Sun, Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides, Nat. Commun. 10 (2019) 1–11. [77] Q.Wang, T.Niu, L.Wang, J.Huang, H.She, NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting, Cuihua Xuebao/Chinese J. Catal. 39 (2018) 613–618. [78] W.Liu, H.Liu, L.Dang, H.Zhang, X.Wu, B.Yang, Z.Li, X.Zhang, L.Lei, S.Jin, Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo-Electrochemical Oxygen Evolution, Adv. Funct. Mater. 27 (2017). [79] T.Zhang, Y.Lu, J.Wang, Z.Wang, W.Zhang, X.Wang, J.Su, L.Guo, Growth of NiMn layered double hydroxides on nanopyramidal BiVO4 photoanode for enhanced photoelectrochemical performance, Nanotechnology. 31 (2020) 115707.
|