|
[1] M. Mulder, Basic principles of membrane technology, Springer Science & Business Media, 2012. [2] M.N.T. Okano, F.M. Winnik, Poly (N-isopropylacrylamide)-based smart surfaces for cell sheet tissue engineering, Material Matters, 5 (2010) 56. [3] J. Liu, L.J. Yu, G. Yue, N. Wang, Z. Cui, L. Hou, J. Li, Q. Li, A. Karton, Q. Cheng, Thermoresponsive graphene membranes with reversible gating regularity for smart fluid control, Advanced Functional Materials, 29 (2019) 1808501. [4] H. Liu, S. Yang, Y. Liu, M. Miao, Y. Zhao, A. Sotto, C. Gao, J. Shen, Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning, Journal of Membrane Science, 579 (2019) 230-239. [5] H. Liu, J. Liao, Y. Zhao, A. Sotto, J. Zhu, B. van der Bruggen, C. Gao, J. Shen, Bioinspired dual stimuli-responsive membranes with enhanced gating ratios and reversible performances for water gating, Journal of Membrane Science, 564 (2018) 53-61. [6] Y. Li, Y. Mao, C. Xiao, X. Xu, X. Li, Flexible pH sensor based on a conductive PANI membrane for pH monitoring, RSC Advances, 10 (2020) 21-28. [7] X. Li, Q. Zhang, W. Zhang, R. Qu, Y. Wei, L. Feng, Smart Nylon Membranes with pH‐Responsive Wettability: High‐Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactant‐Stabilized Emulsions, Advanced Materials Interfaces, 5 (2018) 1801179. [8] T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors, ACS applied materials & interfaces, 10 (2018) 30732-30740. [9] E. Chen, B.-M. Chen, Y.-C. Su, Y.-C. Chang, T.-L. Cheng, Y. Barenholz, S.R. Roffler, Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex, ACS nano, (2020). [10] A.-I. Bunea, S. Harloff-Helleberg, R. Taboryski, H.M. Nielsen, Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques, Advances in Colloid and Interface Science, (2020) 102177. [11] Z. Liu, W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Stimuli-responsive smart gating membranes, Chem Soc Rev, 45 (2016) 460-475. [12] L.G. Cuello, J.G. Romero, D.M. Cortes, E. Perozo, pH-dependent gating in the Streptomyces lividans K+ channel, Biochemistry, 37 (1998) 3229-3236. [13] L.-Y. Chu, R. Xie, T. Schäfer, S.R. Wickramasinghe, Z. Liu, J. Yuan, J.D. Batteas, W. Wang, T. Yamaguchi, X.-J. Ju, Smart Membranes, Royal Society of Chemistry, 2019. [14] Z.Q. Cao, G.J. Wang, Multi‐Stimuli‐Responsive Polymer Materials: Particles, Films, and Bulk Gels, The Chemical Record, 16 (2016) 1398-1435. [15] D. Wandera, S.R. Wickramasinghe, S.M. Husson, Stimuli-responsive membranes, Journal of Membrane Science, 357 (2010) 6-35. [16] M. Mocan, H. Wahdat, H.M. van der Kooij, W.M. de Vos, M. Kamperman, Systematic variation of membrane casting parameters to control the structure of thermo-responsive isoporous membranes, Journal of membrane science, 548 (2018) 502-509. [17] A.R. Kim, S.L. Lee, S.N. Park, Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin, International journal of biological macromolecules, 118 (2018) 731-740. [18] J. Han, K. Wang, D. Yang, J. Nie, Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery, International Journal of Biological Macromolecules, 44 (2009) 229-235. [19] M. Kim, S.K. Schmitt, J.W. Choi, J.D. Krutty, P. Gopalan, From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes, Polymers, 7 (2015) 1346-1378. [20] R. Roy, S. Komarneni, D. Roy, Multi-phasic ceramic composites made by sol-gel technique, MRS Online Proceedings Library Archive, 32 (1984). [21] F. Bergaya, C. Detellier, J.-F. Lambert, G. Lagaly, Introduction to clay–polymer nanocomposites (CPN), in: Developments in Clay Science, Elsevier, 2013, pp. 655-677. [22] S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond, Nanoscale, 8 (2016) 15115-15131. [23] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, science, 306 (2004) 666-669. [24] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature materials, 10 (2011) 569-581. [25] Y. Kang, Y. Xia, H. Wang, X. Zhang, 2D laminar membranes for selective water and ion transport, Advanced Functional Materials, 29 (2019) 1902014. [26] B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, (1859) 249-259. [27] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society, 80 (1958) 1339-1339. [28] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814. [29] S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter, Desalination, 371 (2015) 78-87. [30] M. Heskins, J.E. Guillet, Solution properties of poly (N-isopropylacrylamide), Journal of Macromolecular Science—Chemistry, 2 (1968) 1441-1455. [31] Y.-J. Kim, Y.T. Matsunaga, Thermo-responsive polymers and their application as smart biomaterials, Journal of Materials Chemistry B, 5 (2017) 4307-4321. [32] 賴君義主編, 薄膜科技概論 Introduction to membrane science and technology, 五南, 臺北市, 2019. [33] H.-T.L. Crystal, Wijmans et al.(1995)“The Solution-Diffusion Model: A Review.”, J. Memb. Sci, 107 (1995) 1-21. [34] A. Higuchi, M. Tamai, Y.-A. Ko, Y.-I. Tagawa, Y.-H. Wu, B.D. Freeman, J.-T. Bing, Y. Chang, Q.-D. Ling, Polymeric membranes for chiral separation of pharmaceuticals and chemicals, Polymer Reviews, 50 (2010) 113-143. [35] D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes, Science, 332 (2011) 674-676. [36] M. Tao, L. Xue, F. Liu, L. Jiang, An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation, Advanced Materials, 26 (2014) 2943-2948. [37] B.D. McCloskey, H.B. Park, H. Ju, B.W. Rowe, D.J. Miller, B.D. Freeman, A bioinspired fouling-resistant surface modification for water purification membranes, Journal of membrane science, 413 (2012) 82-90. [38] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angewandte Chemie International Edition, 54 (2015) 3368-3386. [39] R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms, Chemical Society Reviews, 45 (2016) 5888-5924. [40] G.M. Geise, H.S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science, Journal of Polymer Science Part B: Polymer Physics, 48 (2010) 1685-1718. [41] A. Matin, Z. Khan, S. Zaidi, M. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1-16. [42] K.L. Tu, L.D. Nghiem, A.R. Chivas, Boron removal by reverse osmosis membranes in seawater desalination applications, Separation and Purification Technology, 75 (2010) 87-101. [43] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environmental science & technology, 47 (2013) 3715-3723. [44] H. Zhao, S. Chen, X. Quan, H. Yu, H. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Applied Catalysis B: Environmental, 194 (2016) 134-140. [45] Z. Xu, T. Wu, J. Shi, W. Wang, K. Teng, X. Qian, M. Shan, H. Deng, X. Tian, C. Li, Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes, ACS applied materials & interfaces, 8 (2016) 18418-18429. [46] Y.T. Nam, J. Choi, K.M. Kang, D.W. Kim, H.-T. Jung, Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding, ACS Applied Materials & Interfaces, 8 (2016) 27376-27382. [47] H.-R. Chae, J. Lee, C.-H. Lee, I.-C. Kim, P.-K. Park, Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance, Journal of Membrane Science, 483 (2015) 128-135. [48] R. Castro-Muñoz, J. Buera-González, O. de la Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the dehydration of ethanol using pervaporation cross-linked poly (vinyl alcohol)/graphene oxide membranes, Journal of Membrane Science, 582 (2019) 423-434. [49] M.I. Gibson, R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles, Chemical society reviews, 42 (2013) 7204-7213. [50] D. Roy, W.L. Brooks, B.S. Sumerlin, New directions in thermoresponsive polymers, Chemical Society Reviews, 42 (2013) 7214-7243. [51] S. Strandman, X. Zhu, Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions, Progress in Polymer Science, 42 (2015) 154-176. [52] G. Vancoillie, D. Frank, R. Hoogenboom, Thermoresponsive poly (oligo ethylene glycol acrylates), Progress in Polymer Science, 39 (2014) 1074-1095. [53] W. Zhang, T. Aida, Thermally responsive pulsating nanotubules, Science, 337 (2012) 1462-1463. [54] S. Nowag, R. Haag, pH‐responsive micro‐and nanocarrier systems, Angewandte Chemie International Edition, 53 (2014) 49-51. [55] K. Zhou, H. Liu, S. Zhang, X. Huang, Y. Wang, G. Huang, B.D. Sumer, J. Gao, Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli, Journal of the American Chemical Society, 134 (2012) 7803-7811. [56] J.P. Magnusson, A. Khan, G. Pasparakis, A.O. Saeed, W. Wang, C. Alexander, Ion-sensitive “isothermal” responsive polymers prepared in water, Journal of the American Chemical Society, 130 (2008) 10852-10853. [57] T. Nakamura, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, A metal–ion-responsive adhesive material via switching of molecular recognition properties, Nature communications, 5 (2014) 4622. [58] Q. Dai, A. Nelson, Magnetically-responsive self assembled composites, Chemical Society Reviews, 39 (2010) 4057-4066. [59] M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nature materials, 8 (2009) 935-939. [60] D.-H. Qu, Q.-C. Wang, Q.-W. Zhang, X. Ma, H. Tian, Photoresponsive host–guest functional systems, Chemical reviews, 115 (2015) 7543-7588. [61] N. Ma, Y. Li, H. Xu, Z. Wang, X. Zhang, Dual redox responsive assemblies formed from diselenide block copolymers, Journal of the American Chemical Society, 132 (2010) 442-443. [62] N.S. Ieong, M. Redhead, C. Bosquillon, C. Alexander, M. Kelland, R.K. O’Reilly, The missing lactam-thermoresponsive and biocompatible poly (N-vinylpiperidone) polymers by xanthate-mediated RAFT polymerization, Macromolecules, 44 (2011) 886-893. [63] A. Adamus, J. Komasa, S. Kadłubowski, P. Ulański, J. Rosiak, M. Kawecki, A. Klama-Baryła, A. Dworak, B. Trzebicka, R. Szweda, Thermoresponsive poly [tri (ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation, Colloids and Surfaces B: Biointerfaces, 145 (2016) 185-193. [64] H. Zou, W. Yuan, Temperature-and redox-responsive magnetic complex micelles for controlled drug release, Journal of Materials Chemistry B, 3 (2015) 260-269. [65] R. Wei, F. Yang, R. Gu, Q. Liu, J. Zhou, X. Zhang, W. Zhao, C. Zhao, Design of robust thermal and anion dual-responsive membranes with switchable response temperature, ACS applied materials & interfaces, 10 (2018) 36443-36455. [66] R.L.G. Lecaros, Z.-C. Syu, Y.-H. Chiao, S.R. Wickramasinghe, Y.-L. Ji, Q.-F. An, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Characterization of a thermoresponsive chitosan derivative as a potential draw solute for forward osmosis, Environmental science & technology, 50 (2016) 11935-11942. [67] Q. Zhang, C. Weber, U.S. Schubert, R. Hoogenboom, Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions, Materials Horizons, 4 (2017) 109-116. [68] R. Victor, P. Woisel, R. Hoogenboom, Supramolecular control over thermoresponsive polymers, Materials Today, 19 (2016) 44-55. [69] H. Zhang, Q. Zhang, L. Zhang, T. Pei, E. Li, H. Wang, Q. Zhang, L. Xia, Temperature‐Responsive Electrocatalysis Based on Poly (N‐Isopropylacrylamide)‐Modified Graphene Oxide (PNIPAm‐GO), Chemistry–A European Journal, 25 (2019) 1535-1542. [70] A. Kundu, S. Nandi, P. Das, A.K. Nandi, Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs, ACS Applied Materials & Interfaces, 7 (2015) 3512-3523. [71] G. Yao, S. Li, J. Xu, H. Liu, Dual-responsive graphene oxide/poly (NIPAM-co-AA) hydrogel as an adsorbent for rhodamine B and imidacloprid, Journal of Chemical & Engineering Data, 64 (2019) 4054-4065. [72] H. Liu, J. Zhu, L. Hao, Y. Jiang, B. van der Bruggen, A. Sotto, C. Gao, J. Shen, Thermo-and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules, Journal of Membrane Science, 587 (2019) 117163. [73] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecules, 13 (2012) 3418-3426. [74] B. Luan, B.W. Muir, J. Zhu, X. Hao, A RAFT copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly (NIPAM-co-HPMA), RSC advances, 6 (2016) 89925-89933. [75] G. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, 43 (2005) 641-649. [76] U.Q. Ly, M.P. Pham, M.J. Marks, T.N. Truong, Density functional theory study of mechanism of epoxy‐carboxylic acid curing reaction, Journal of Computational Chemistry, 38 (2017) 1093-1102. [77] L. Shao, X. Chang, Y. Zhang, Y. Huang, Y. Yao, Z. Guo, Graphene oxide cross-linked chitosan nanocomposite membrane, Applied Surface Science, 280 (2013) 989-992. [78] A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane, Desalination, 286 (2012) 99-107. [79] H. Chen, W.-S. Hung, C.-H. Lo, S.-H. Huang, M.-L. Cheng, G. Liu, K.-R. Lee, J.-Y. Lai, Y.-M. Sun, C.-C. Hu, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules, 40 (2007) 7542-7557. [80] H. Wang, Y.H. Hu, Electrolyte-induced precipitation of graphene oxide in its aqueous solution, Journal of colloid and interface science, 391 (2013) 21-27. [81] L. Zhu, R. Liu, Z. Fang, P.O. Agboola, N.F. Al-Khalli, I. Shakir, Y. Xu, Efficient Fractionation of Graphene Oxide Based on Reversible Adsorption of Polymer and Size-Dependent Sodium Ion Storage, ACS applied materials & interfaces, 11 (2018) 2218-2224. [82] R. Imani, S.H. Emami, S. Faghihi, Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications, Physical Chemistry Chemical Physics, 17 (2015) 6328-6339. [83] K. Jain, R. Vedarajan, M. Watanabe, M. Ishikiriyama, N. Matsumi, Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers, Polymer Chemistry, 6 (2015) 6819-6825. [84] Q. Fang, X. Zhou, W. Deng, Z. Zheng, Z. Liu, Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation, Scientific reports, 6 (2016) 1-11. [85] Y. Wei, Y. Zhang, X. Gao, Y. Yuan, B. Su, C. Gao, Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes, Carbon, 108 (2016) 568-575. [86] P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide, Journal of Membrane Science, 535 (2017) 208-220. [87] X. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces, Advanced Materials, 18 (2006) 3063-3078. [88] K. Cao, Z. Jiang, J. Zhao, C. Zhao, C. Gao, F. Pan, B. Wang, X. Cao, J. Yang, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, Journal of membrane science, 469 (2014) 272-283. [89] L. Wang, N. Wang, H. Yang, Q. An, B. Li, S. Ji, Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation, Journal of Membrane Science, 559 (2018) 8-18. [90] J. Liu, N. Wang, L.-J. Yu, A. Karton, W. Li, W. Zhang, F. Guo, L. Hou, Q. Cheng, L. Jiang, Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation, Nature communications, 8 (2017) 1-9. [91] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 47 (2009) 145-152. [92] W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chemistry of Materials, 26 (2014) 2983-2990. [93] W.-S. Hung, Q.-F. An, M. De Guzman, H.-Y. Lin, S.-H. Huang, W.-R. Liu, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon, 68 (2014) 670-677. [94] M.B.M.Y. Ang, M.R. Gallardo, G.V.C. Dizon, M.R. De Guzman, L.L. Tayo, S.-H. Huang, C.-L. Lai, H.-A. Tsai, W.-S. Hung, C.-C. Hu, Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance, Journal of Membrane Science, 587 (2019) 117188. [95] W.-S. Hung, Y.-L. Lai, P.-H. Lee, Y.-H. Chiao, A. Sengupta, M. Sivakumar, K.-R. Lee, J.-Y. Lai, Tuneable interlayer spacing self-assembling on graphene oxide-framework membrane for enhance air dehumidification, Separation and Purification Technology, 239 (2020) 116499.
|