跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宏騰
研究生(外文):Hong-Teng Chen
論文名稱:一維與二維熱響應聚(N-異丙基丙烯酰胺)-氧化石墨烯框架薄膜應用於調控分子分離
論文名稱(外文):Mechanism of One-dimensional and Two-dimensional Coordinated Thermal Response PNIPAm/Graphene Oxide Framework Membrane for Control Molecular Separation
指導教授:賴君義賴君義引用關係
指導教授(外文):Juin-Yih Lai
口試委員:洪維松胡蒨傑王志逢
口試委員(外文):Wei-Song HongChien-Chieh HuChih-Feng Wang
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:熱響應複合薄膜氧化石墨烯熱響應性高分子滲透蒸發分離程序一維與二維響應
外文關鍵詞:Thermal response composite membraneGraphene oxideTemperature responsive polymerPervaporation1D and 2D response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 薄膜分離技術 2
1.3 智能響應薄膜 4
1.3.1 概述與未來發展 4
1.3.2 響應種類 6
1.3.3 平板薄膜設計: 7
1.4 奈米複合材料 12
1.5 二維材料 14
1.5.1 介紹 14
1.5.2 石墨烯衍生物 14
1.6 熱響應高分子 16
1.7 滲透蒸發程序 18
1.7.1 滲透蒸發發展史 18
1.7.2 滲透蒸發的分離機制 19
1.8 文獻回顧 20
1.9 研究動機與目的 25
第二章 實驗材料與方法 27
2.1 實驗藥品 27
2.2 實驗器材與儀器 29
2.3 實驗步驟 31
2.3.1 合成熱響應高分子 31
2.3.2 製備氧化石墨烯 32
2.3.3 溶液配置 32
2.3.4 製備薄膜 35
2.4 材料鑑定與性質檢測 36
2.4.1 核磁共振氫譜 37
2.4.2 雷射奈米粒徑電位分析儀 37
2.4.3 紫外光-可見光/近紅外光分析儀 38
2.4.4 高倍率數位顯微鏡 39
2.4.5 掃描式電子顯微鏡 40
2.4.6 微米水接觸角 40
2.4.7 顯微拉曼光譜儀 41
2.4.8 衰減全反射傅里葉轉換紅外光譜儀 41
2.4.9 X射線光電子能譜儀 42
2.4.10 X光繞射儀 43
2.4.11滲透蒸發裝置 44
2.4.12 正電子湮滅譜儀 45
第三章 結果與討論 47
3.1 mPNIPAm之鑑定: 47
3.2 GO與GO-mPNIPAm熱響應材料於溶液狀態下之鑑定與分析 49
3.2.1溶液巨觀分析 49
3.2.2溶液粒徑變化分析 52
3.2.3溶液響應溫度變化 53
3.3 GO與GO-mPNIPAm熱響應複合薄膜分析與鑑定 55
3.3.1 薄膜表面型態分析 55
3.3.2 薄膜表面粗糙度分析 57
3.3.3 薄膜表面親疏水性分析 59
3.3.4 薄膜物理結構分析 60
3.3.5 薄膜化學組成分析 61
3.3.6 薄膜乾濕態層間距變化 66
3.4 GO與GO-mPNIPAm熱響應複合薄膜效能檢測 69
3.4.1 純水通量檢測 69
3.4.2 針對不同溫度下進行滲透蒸發之效能檢測 70
3.4.3 長時間響應開關的效能測試 73
3.5 一維與二維熱響應複合薄膜之機制分析 75
3.5.1 自由體積分析 75
3.5.2 機制分析 78
第四章 結論 79
參考文獻 80
[1] M. Mulder, Basic principles of membrane technology, Springer Science & Business Media, 2012.
[2] M.N.T. Okano, F.M. Winnik, Poly (N-isopropylacrylamide)-based smart surfaces for cell sheet tissue engineering, Material Matters, 5 (2010) 56.
[3] J. Liu, L.J. Yu, G. Yue, N. Wang, Z. Cui, L. Hou, J. Li, Q. Li, A. Karton, Q. Cheng, Thermoresponsive graphene membranes with reversible gating regularity for smart fluid control, Advanced Functional Materials, 29 (2019) 1808501.
[4] H. Liu, S. Yang, Y. Liu, M. Miao, Y. Zhao, A. Sotto, C. Gao, J. Shen, Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning, Journal of Membrane Science, 579 (2019) 230-239.
[5] H. Liu, J. Liao, Y. Zhao, A. Sotto, J. Zhu, B. van der Bruggen, C. Gao, J. Shen, Bioinspired dual stimuli-responsive membranes with enhanced gating ratios and reversible performances for water gating, Journal of Membrane Science, 564 (2018) 53-61.
[6] Y. Li, Y. Mao, C. Xiao, X. Xu, X. Li, Flexible pH sensor based on a conductive PANI membrane for pH monitoring, RSC Advances, 10 (2020) 21-28.
[7] X. Li, Q. Zhang, W. Zhang, R. Qu, Y. Wei, L. Feng, Smart Nylon Membranes with pH‐Responsive Wettability: High‐Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactant‐Stabilized Emulsions, Advanced Materials Interfaces, 5 (2018) 1801179.
[8] T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors, ACS applied materials & interfaces, 10 (2018) 30732-30740.
[9] E. Chen, B.-M. Chen, Y.-C. Su, Y.-C. Chang, T.-L. Cheng, Y. Barenholz, S.R. Roffler, Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex, ACS nano, (2020).
[10] A.-I. Bunea, S. Harloff-Helleberg, R. Taboryski, H.M. Nielsen, Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques, Advances in Colloid and Interface Science, (2020) 102177.
[11] Z. Liu, W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Stimuli-responsive smart gating membranes, Chem Soc Rev, 45 (2016) 460-475.
[12] L.G. Cuello, J.G. Romero, D.M. Cortes, E. Perozo, pH-dependent gating in the Streptomyces lividans K+ channel, Biochemistry, 37 (1998) 3229-3236.
[13] L.-Y. Chu, R. Xie, T. Schäfer, S.R. Wickramasinghe, Z. Liu, J. Yuan, J.D. Batteas, W. Wang, T. Yamaguchi, X.-J. Ju, Smart Membranes, Royal Society of Chemistry, 2019.
[14] Z.Q. Cao, G.J. Wang, Multi‐Stimuli‐Responsive Polymer Materials: Particles, Films, and Bulk Gels, The Chemical Record, 16 (2016) 1398-1435.
[15] D. Wandera, S.R. Wickramasinghe, S.M. Husson, Stimuli-responsive membranes, Journal of Membrane Science, 357 (2010) 6-35.
[16] M. Mocan, H. Wahdat, H.M. van der Kooij, W.M. de Vos, M. Kamperman, Systematic variation of membrane casting parameters to control the structure of thermo-responsive isoporous membranes, Journal of membrane science, 548 (2018) 502-509.
[17] A.R. Kim, S.L. Lee, S.N. Park, Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin, International journal of biological macromolecules, 118 (2018) 731-740.
[18] J. Han, K. Wang, D. Yang, J. Nie, Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery, International Journal of Biological Macromolecules, 44 (2009) 229-235.
[19] M. Kim, S.K. Schmitt, J.W. Choi, J.D. Krutty, P. Gopalan, From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes, Polymers, 7 (2015) 1346-1378.
[20] R. Roy, S. Komarneni, D. Roy, Multi-phasic ceramic composites made by sol-gel technique, MRS Online Proceedings Library Archive, 32 (1984).
[21] F. Bergaya, C. Detellier, J.-F. Lambert, G. Lagaly, Introduction to clay–polymer nanocomposites (CPN), in: Developments in Clay Science, Elsevier, 2013, pp. 655-677.
[22] S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond, Nanoscale, 8 (2016) 15115-15131.
[23] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, science, 306 (2004) 666-669.
[24] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature materials, 10 (2011) 569-581.
[25] Y. Kang, Y. Xia, H. Wang, X. Zhang, 2D laminar membranes for selective water and ion transport, Advanced Functional Materials, 29 (2019) 1902014.
[26] B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, (1859) 249-259.
[27] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society, 80 (1958) 1339-1339.
[28] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814.
[29] S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter, Desalination, 371 (2015) 78-87.
[30] M. Heskins, J.E. Guillet, Solution properties of poly (N-isopropylacrylamide), Journal of Macromolecular Science—Chemistry, 2 (1968) 1441-1455.
[31] Y.-J. Kim, Y.T. Matsunaga, Thermo-responsive polymers and their application as smart biomaterials, Journal of Materials Chemistry B, 5 (2017) 4307-4321.
[32] 賴君義主編, 薄膜科技概論 Introduction to membrane science and technology, 五南, 臺北市, 2019.
[33] H.-T.L. Crystal, Wijmans et al.(1995)“The Solution-Diffusion Model: A Review.”, J. Memb. Sci, 107 (1995) 1-21.
[34] A. Higuchi, M. Tamai, Y.-A. Ko, Y.-I. Tagawa, Y.-H. Wu, B.D. Freeman, J.-T. Bing, Y. Chang, Q.-D. Ling, Polymeric membranes for chiral separation of pharmaceuticals and chemicals, Polymer Reviews, 50 (2010) 113-143.
[35] D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes, Science, 332 (2011) 674-676.
[36] M. Tao, L. Xue, F. Liu, L. Jiang, An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation, Advanced Materials, 26 (2014) 2943-2948.
[37] B.D. McCloskey, H.B. Park, H. Ju, B.W. Rowe, D.J. Miller, B.D. Freeman, A bioinspired fouling-resistant surface modification for water purification membranes, Journal of membrane science, 413 (2012) 82-90.
[38] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angewandte Chemie International Edition, 54 (2015) 3368-3386.
[39] R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms, Chemical Society Reviews, 45 (2016) 5888-5924.
[40] G.M. Geise, H.S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science, Journal of Polymer Science Part B: Polymer Physics, 48 (2010) 1685-1718.
[41] A. Matin, Z. Khan, S. Zaidi, M. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1-16.
[42] K.L. Tu, L.D. Nghiem, A.R. Chivas, Boron removal by reverse osmosis membranes in seawater desalination applications, Separation and Purification Technology, 75 (2010) 87-101.
[43] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environmental science & technology, 47 (2013) 3715-3723.
[44] H. Zhao, S. Chen, X. Quan, H. Yu, H. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Applied Catalysis B: Environmental, 194 (2016) 134-140.
[45] Z. Xu, T. Wu, J. Shi, W. Wang, K. Teng, X. Qian, M. Shan, H. Deng, X. Tian, C. Li, Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes, ACS applied materials & interfaces, 8 (2016) 18418-18429.
[46] Y.T. Nam, J. Choi, K.M. Kang, D.W. Kim, H.-T. Jung, Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding, ACS Applied Materials & Interfaces, 8 (2016) 27376-27382.
[47] H.-R. Chae, J. Lee, C.-H. Lee, I.-C. Kim, P.-K. Park, Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance, Journal of Membrane Science, 483 (2015) 128-135.
[48] R. Castro-Muñoz, J. Buera-González, O. de la Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the dehydration of ethanol using pervaporation cross-linked poly (vinyl alcohol)/graphene oxide membranes, Journal of Membrane Science, 582 (2019) 423-434.
[49] M.I. Gibson, R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles, Chemical society reviews, 42 (2013) 7204-7213.
[50] D. Roy, W.L. Brooks, B.S. Sumerlin, New directions in thermoresponsive polymers, Chemical Society Reviews, 42 (2013) 7214-7243.
[51] S. Strandman, X. Zhu, Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions, Progress in Polymer Science, 42 (2015) 154-176.
[52] G. Vancoillie, D. Frank, R. Hoogenboom, Thermoresponsive poly (oligo ethylene glycol acrylates), Progress in Polymer Science, 39 (2014) 1074-1095.
[53] W. Zhang, T. Aida, Thermally responsive pulsating nanotubules, Science, 337 (2012) 1462-1463.
[54] S. Nowag, R. Haag, pH‐responsive micro‐and nanocarrier systems, Angewandte Chemie International Edition, 53 (2014) 49-51.
[55] K. Zhou, H. Liu, S. Zhang, X. Huang, Y. Wang, G. Huang, B.D. Sumer, J. Gao, Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli, Journal of the American Chemical Society, 134 (2012) 7803-7811.
[56] J.P. Magnusson, A. Khan, G. Pasparakis, A.O. Saeed, W. Wang, C. Alexander, Ion-sensitive “isothermal” responsive polymers prepared in water, Journal of the American Chemical Society, 130 (2008) 10852-10853.
[57] T. Nakamura, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, A metal–ion-responsive adhesive material via switching of molecular recognition properties, Nature communications, 5 (2014) 4622.
[58] Q. Dai, A. Nelson, Magnetically-responsive self assembled composites, Chemical Society Reviews, 39 (2010) 4057-4066.
[59] M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nature materials, 8 (2009) 935-939.
[60] D.-H. Qu, Q.-C. Wang, Q.-W. Zhang, X. Ma, H. Tian, Photoresponsive host–guest functional systems, Chemical reviews, 115 (2015) 7543-7588.
[61] N. Ma, Y. Li, H. Xu, Z. Wang, X. Zhang, Dual redox responsive assemblies formed from diselenide block copolymers, Journal of the American Chemical Society, 132 (2010) 442-443.
[62] N.S. Ieong, M. Redhead, C. Bosquillon, C. Alexander, M. Kelland, R.K. O’Reilly, The missing lactam-thermoresponsive and biocompatible poly (N-vinylpiperidone) polymers by xanthate-mediated RAFT polymerization, Macromolecules, 44 (2011) 886-893.
[63] A. Adamus, J. Komasa, S. Kadłubowski, P. Ulański, J. Rosiak, M. Kawecki, A. Klama-Baryła, A. Dworak, B. Trzebicka, R. Szweda, Thermoresponsive poly [tri (ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation, Colloids and Surfaces B: Biointerfaces, 145 (2016) 185-193.
[64] H. Zou, W. Yuan, Temperature-and redox-responsive magnetic complex micelles for controlled drug release, Journal of Materials Chemistry B, 3 (2015) 260-269.
[65] R. Wei, F. Yang, R. Gu, Q. Liu, J. Zhou, X. Zhang, W. Zhao, C. Zhao, Design of robust thermal and anion dual-responsive membranes with switchable response temperature, ACS applied materials & interfaces, 10 (2018) 36443-36455.
[66] R.L.G. Lecaros, Z.-C. Syu, Y.-H. Chiao, S.R. Wickramasinghe, Y.-L. Ji, Q.-F. An, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Characterization of a thermoresponsive chitosan derivative as a potential draw solute for forward osmosis, Environmental science & technology, 50 (2016) 11935-11942.
[67] Q. Zhang, C. Weber, U.S. Schubert, R. Hoogenboom, Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions, Materials Horizons, 4 (2017) 109-116.
[68] R. Victor, P. Woisel, R. Hoogenboom, Supramolecular control over thermoresponsive polymers, Materials Today, 19 (2016) 44-55.
[69] H. Zhang, Q. Zhang, L. Zhang, T. Pei, E. Li, H. Wang, Q. Zhang, L. Xia, Temperature‐Responsive Electrocatalysis Based on Poly (N‐Isopropylacrylamide)‐Modified Graphene Oxide (PNIPAm‐GO), Chemistry–A European Journal, 25 (2019) 1535-1542.
[70] A. Kundu, S. Nandi, P. Das, A.K. Nandi, Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs, ACS Applied Materials & Interfaces, 7 (2015) 3512-3523.
[71] G. Yao, S. Li, J. Xu, H. Liu, Dual-responsive graphene oxide/poly (NIPAM-co-AA) hydrogel as an adsorbent for rhodamine B and imidacloprid, Journal of Chemical & Engineering Data, 64 (2019) 4054-4065.
[72] H. Liu, J. Zhu, L. Hao, Y. Jiang, B. van der Bruggen, A. Sotto, C. Gao, J. Shen, Thermo-and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules, Journal of Membrane Science, 587 (2019) 117163.
[73] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecules, 13 (2012) 3418-3426.
[74] B. Luan, B.W. Muir, J. Zhu, X. Hao, A RAFT copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly (NIPAM-co-HPMA), RSC advances, 6 (2016) 89925-89933.
[75] G. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, 43 (2005) 641-649.
[76] U.Q. Ly, M.P. Pham, M.J. Marks, T.N. Truong, Density functional theory study of mechanism of epoxy‐carboxylic acid curing reaction, Journal of Computational Chemistry, 38 (2017) 1093-1102.
[77] L. Shao, X. Chang, Y. Zhang, Y. Huang, Y. Yao, Z. Guo, Graphene oxide cross-linked chitosan nanocomposite membrane, Applied Surface Science, 280 (2013) 989-992.
[78] A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane, Desalination, 286 (2012) 99-107.
[79] H. Chen, W.-S. Hung, C.-H. Lo, S.-H. Huang, M.-L. Cheng, G. Liu, K.-R. Lee, J.-Y. Lai, Y.-M. Sun, C.-C. Hu, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules, 40 (2007) 7542-7557.
[80] H. Wang, Y.H. Hu, Electrolyte-induced precipitation of graphene oxide in its aqueous solution, Journal of colloid and interface science, 391 (2013) 21-27.
[81] L. Zhu, R. Liu, Z. Fang, P.O. Agboola, N.F. Al-Khalli, I. Shakir, Y. Xu, Efficient Fractionation of Graphene Oxide Based on Reversible Adsorption of Polymer and Size-Dependent Sodium Ion Storage, ACS applied materials & interfaces, 11 (2018) 2218-2224.
[82] R. Imani, S.H. Emami, S. Faghihi, Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications, Physical Chemistry Chemical Physics, 17 (2015) 6328-6339.
[83] K. Jain, R. Vedarajan, M. Watanabe, M. Ishikiriyama, N. Matsumi, Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers, Polymer Chemistry, 6 (2015) 6819-6825.
[84] Q. Fang, X. Zhou, W. Deng, Z. Zheng, Z. Liu, Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation, Scientific reports, 6 (2016) 1-11.
[85] Y. Wei, Y. Zhang, X. Gao, Y. Yuan, B. Su, C. Gao, Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes, Carbon, 108 (2016) 568-575.
[86] P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide, Journal of Membrane Science, 535 (2017) 208-220.
[87] X. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces, Advanced Materials, 18 (2006) 3063-3078.
[88] K. Cao, Z. Jiang, J. Zhao, C. Zhao, C. Gao, F. Pan, B. Wang, X. Cao, J. Yang, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, Journal of membrane science, 469 (2014) 272-283.
[89] L. Wang, N. Wang, H. Yang, Q. An, B. Li, S. Ji, Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation, Journal of Membrane Science, 559 (2018) 8-18.
[90] J. Liu, N. Wang, L.-J. Yu, A. Karton, W. Li, W. Zhang, F. Guo, L. Hou, Q. Cheng, L. Jiang, Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation, Nature communications, 8 (2017) 1-9.
[91] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 47 (2009) 145-152.
[92] W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chemistry of Materials, 26 (2014) 2983-2990.
[93] W.-S. Hung, Q.-F. An, M. De Guzman, H.-Y. Lin, S.-H. Huang, W.-R. Liu, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon, 68 (2014) 670-677.
[94] M.B.M.Y. Ang, M.R. Gallardo, G.V.C. Dizon, M.R. De Guzman, L.L. Tayo, S.-H. Huang, C.-L. Lai, H.-A. Tsai, W.-S. Hung, C.-C. Hu, Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance, Journal of Membrane Science, 587 (2019) 117188.
[95] W.-S. Hung, Y.-L. Lai, P.-H. Lee, Y.-H. Chiao, A. Sengupta, M. Sivakumar, K.-R. Lee, J.-Y. Lai, Tuneable interlayer spacing self-assembling on graphene oxide-framework membrane for enhance air dehumidification, Separation and Purification Technology, 239 (2020) 116499.
電子全文 電子全文(網際網路公開日期:20250813)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊