(3.239.33.139) 您好!臺灣時間:2021/03/02 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃光緯
研究生(外文):Kuang-Wei Huang
論文名稱:窄頻物聯網隨機存取通道之適應性資源配置
論文名稱(外文):Adaptive Resource Allocation for Narrow Band Internet of Things Physical Random Access Channel
指導教授:馮輝文
指導教授(外文):Huei-Wen Ferng
口試委員:林嘉慶鄭瑞光張宏慶馮輝文
口試委員(外文):Jia-Chia LinRay-Guang ChengHung-Chin JangHuei-Wen Ferng
口試日期:2020-01-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:35
中文關鍵詞:窄頻物聯網大規模機器型態通訊低功耗廣域網路隨機存取程 序
外文關鍵詞:Narrow Band Internet of ThingsMassive Machine-Type CommunicationsLow-Power Wide-Area NetworkRandom Access Procedure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國際行動通訊組織(International Mobile Telecommunications-2020, IMT-2020) 確定了第五代行動通訊網路(the 5th Generation (5G) Mobile CommunicationNetwork) 並訂定三大主要情境:
(1) 增強型行動寬頻通訊(Enhanced MobileBroadband, eMBB)、(2) 超可靠度和低延遲通訊(Ultra-Reliable and Low LatencyCommunications, URLLC)、(3) 大規模機器型通訊(Massive Machine-Type Communications,mMTC),其中第三代合作夥伴計畫(the 3rd Generation Partnership Project, 3GPP) 標準組織於第十三版(Release 13) 提出的窄頻物聯網(Narrow Band Internet of Things, NB-IoT),其為一項具備低成本、低功耗、大量連接等特性的低功耗廣域網路傳輸(Low-Power Wide-Area Network, LPWAN) 技術,且可做為5G mMTC 的基礎技術。於NB-IoT 中,每當使用者欲發送數據到基地台時,需要執行隨機存取程序(Random Access Procedure) 以建立連線,然而,在大規模機器型態通訊應用場景中設備數量龐大,當大量設備在短時間內發起傳送請求時,由於資源不足將導致大量的碰撞發生,因而降低隨機存取機率。於是,本碩士論文將透過多頻帶多通道時槽阿羅哈(Slotted ALOHA) 系統實踐NB-IoT 的涵蓋範圍延伸級別,並提出一種適應性機制來調配傳送次數及後退窗口大小,在維持存取延遲大小的情況下,能進一步讓存取機率提升。
International mobile telecommunications-2020 (IMT-2020) has identified the 5th generation (5G) mobile communication network and defines three major scenarios: (1) enhanced mobile broadband (eMBB), (2) ultra-reliable and low latency communications (URLLC), (3) massive machine-type communications (mMTC). As for the narrow band Internet of things (NB-IoT) proposed by the 3rd generation partnership project (3GPP) standards organization in Release 13, it is a low-power wide-area network (LPWAN) technology with features such as low cost, low power consumption, and a large number of connections. NB-IoT can be used to serve as the basic technology of 5G mMTC. Whenever a user in NB-IoT wants to send data to a base station, a random access procedure needs to be invoked to establish a connection. However, in the mMTC application scenario, the number of devices is huge. When a large number of devices initiate transmission requests within a short period of time, a large number of collisions will occur due to insufficient resources, reducing the probability of random access. Therefore, the coverage extension level (CE Level) of NB-IoT will be implemented through a multi-band and multi-channel slotted ALOHA system in this thesis. Then, an adaptive mechanism to adjust the number of transmissions and the backoff window size is proposed as well to further increase the probability of random access while maintaining the access delay.
論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
考試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
第一章、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 大規模機器型態通訊(mMTC) . . . . . . . . . . . . . . . . . . . . . 1
1.2 低功耗廣域網路(LPWAN) . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 窄頻物聯網(NB-IoT) 的基本介紹. . . . . . . . . . . . . . . . . . . 2
1.4 窄頻物聯網(NB-IoT) 的佈署模式. . . . . . . . . . . . . . . . . . . 3
1.5 涵蓋範圍延伸等級(CE Level) . . . . . . . . . . . . . . . . . . . . . 3
1.6 研究背景和動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 論文章節之安排. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章、相關文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 窄頻物聯網(NB-IoT) 隨機存取程序. . . . . . . . . . . . . . . . . . 8
2.2 多頻帶多通道時槽阿羅哈系統(Multi-Band Multi-Channel Slotted
ALOHA System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 頻帶中最大嘗試傳送次數及總嘗試傳送次數. . . . . . . . . 10
2.3 實體隨機存取通道(NPRACH) 資源配置. . . . . . . . . . . . . . . 12
第三章、本碩士論文所提之方法與設計. . . . . . . . . . . . . . . . . . . . . 13
3.1 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 涵蓋範圍延伸等級之最大傳送次數及總傳送次數. . . . . . . . . . . 13
3.3 後退窗口(Backoff Window) 大小之選擇. . . . . . . . . . . . . . . 13
3.4 子載波(Subcarrier) 數量. . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 蓋範圍延伸等級內不同比例之使用者設備數量討論. . . . . . . . . 14
3.6 所提機制之演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
第四章、數值結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 模擬環境參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 存取機率與不同數量使用者之關係. . . . . . . . . . . . . . . . . . 18
4.2.1 Beta 到訪(Beta Arrival) . . . . . . . . . . . . . . . . . . . . 18
4.2.2 存取機率與涵蓋範圍延伸等級(CE Level) 使用者設備數量
比例變化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 延遲約束(Delay Constraint) . . . . . . . . . . . . . . . . 23
第五章、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
[1] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. Wong, “D-ACB: Adaptive
congestion control algorithm for bursty M2M traffic in LTE networks,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9847–9861, Feb.
2016.
[2] S.-H. Hwang and S.-Z. Liu, “Survey on 3GPP low power wide area technologies
and its application,” IEEE VTS Asia Pacific Wireless Communications
Symposium (APWCS), pp. 28–30, Sep. 2019.
[3] N. Abu-Ali, A.-E. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in
LTE and LTE-Advanced: Tutorial, survey and evaluation framework,” IEEE
Communications Surveys and Tutorials, pp. 1239–1265, Dec. 2013.
[4] N. I. Osman and E. B. Abbas, “Simulation and modelling of LoRa and Sigfox
low power wide area network technologies,” in Proc. International Conference
on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE),
pp. 12–14, Aug. 2018.
[5] A. E. Mahjoubi, T. Mazri, and N. Hmina, “M2M and eMTC communications
via NB-IoT, morocco first testbed experimental results and rf deployment scenario:
New approach to improve main 5G KPIs and performances,” in Proc.
International Conference on Wireless Networks and Mobile Communications
(WINCOM), pp. 1–4, Dec. 2017.
[6] H. Chung, S. Lee, and J. Jeong, “NB-IoT optimization on paging MCS and
coverage level,” in Proc. 15th International Symposium on Wireless Communication
Systems (ISWCS), pp. 28–31, Aug. 2018.
[7] R. Boisguene, S.-C. Tseng, and C.-W. Huang, “A survey on NB-IoT downlink
scheduling: Issues and potential solutions,” in Proc. 13th International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 547–
551, Jul. 2017.
8] C. Yu, L. Yu, and Y. Wu, “Uplink scheduling and link adaptation for narrowband
internet of things systems,” IEEE Access, vol. 5, pp. 1724–1734, Feb.
2017.
[9] Y.-P. E. Wang, X. Lin, and A. Adhikary, “A primer on 3GPP narrowband Internet
of Things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117–123,
Mar. 2017.
[10] A. Adhikary, X. Lin, and Y.-P. E. Wang, “Performance evaluation of NB-IoT
coverage,” in Proc. IEEE 84th Vehicular Technology Conference (VTC-Fall),
pp. 1–5, Sept. 2016.
[11] M. S. Ali, E. Hossain, and D. I. Kim, “LTE/LTE-A random access for massive
machine-type communications in smart cities,” IEEE Communications
Magazine, vol. 55, no. 1, pp. 76–83, Jan. 2017.
[12] S.-Y. Lien, T.-H. Liau, and C.-Y. Kao, “Cooperative access class barring for
machine-to-machine communications,” IEEE Transactions on Wireless Communications,
vol. 11, no. 1, pp. 27–32, Dec. 2012.
[13] J.-P. Cheng, C.-H. Lee, and T.-M. Lin, “Prioritized random access with dynamic
access barring for RAN overload in 3GPP LTE-A networks,” in Proc.
IEEE GLOBECOM Workshops (GC Wkshps), pp. 368–372, Mar. 2011.
[14] Y.-C. Pang, G.-Y. Lin, and H.-Y. Wei, “Context-aware dynamic resource allocation
for cellular M2M communications,” IEEE Internet of Things Journal,
vol. 3, no. 3, pp. 318–326, Nov. 2016.
[15] A. Ksentini, Y. Hadjadj-Aoul, and T. Taleb, “Cellular-based machine-tomachine:
Overload control,” IEEE Network, vol. 26, no. 6, Dec. 2012.
[16] N. Jiang, Y. Deng, M. Condoluci, W. Guo, A. Nallanathan, and M. Dohler,
“Rach preamble repetition in NB-IoT network,” IEEE Communications Letters,
vol. 22, no. 6, pp. 1244–1247, Jan. 2018.
[17] T. Kim, D. M. Kim, and N. a. Pratas, “An enhanced access reservation protocol
with a partial preamble transmission mechanism in NB-IoT systems,”
IEEE Communications Letters, vol. 21, no. 10, pp. 2270–2273, Jun. 2017.
[18] F. Chiti, D. Di Giacomo, R. Fantacci, L. Pierucci, and C. Carlini, “Optimized
narrow-band M2M systems for massive cellular IoT communications,”
in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 1–6,
Dec. 2016.
[19] L. Li, X. Wen, and Z. Lu, “Pre-backoff based random access with priority for
5G machine-type communication,” in Proc. IEEE Globecom Workshops (GC
Wkshps), pp. 1–6, Dec. 2017.
[20] R. Harwahyu, R.-G. Cheng, and C.-H. Wei, “Optimization of random access
channel in NB-IoT,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 391–
402, Dec. 2018.
[21] Y. Miao, Y. Tian, and J. Cheng, “RADB: Random access with differentiated
barring for latency-constrained applications in NB-IoT network,” Wireless
Communications and Mobile Computing, vol. 2018, Jan. 2018.
[22] G. Gu and G. Peng, “The survey of GSM wireless communication system,”
in Proc. International Conference on Computer and Information Application,
pp. 3–5, Dec. 2010.
[23] L. Liu and Y. Liang, “A new architecture design for WCDMA and GSM dualmode
mobile phones,” in Proc. International Conference on Computer Science
and Electronics Engineering, pp. 23–25, Mar. 2012.
[24] Y. Zhao, K. Liu, and H. Yan, “A classification back-off method for capacity optimization
in NB-IoT random access,” in Proc. IEEE International Conference
on Anti-counterfeiting, Security, and Identification (ASID), pp. 104–108, Oct.
2017.
[25] R. Harwahyu, R.-G. Cheng, and D.-H. Liu, “Fair configuration scheme for
random access in NB-IoT with multiple coverage enhancement levels,” IEEE
Transactions on Mobile Computing, pp. 1–1, Dec. 2019.
[26] “Study on RAN improvements for machine-type communications,” V11.0.0,
電子全文 電子全文(網際網路公開日期:20230211)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔