跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱詠誠
研究生(外文):Yun-Chen Chu
論文名稱:根據區間之U-二次方程式分佈、區間直覺模糊值、及轉換矩陣以作多屬性決策之新方法
論文名稱(外文):Multiattribute Decision Making Based on U-Quadratic Distribution of Intervals, Interval-Valued Intuitionistic Fuzzy Values, and Transformed Matrix
指導教授:陳錫明陳錫明引用關係
指導教授(外文):Shyi-Ming Chen
口試委員:呂永和壽大衛
口試委員(外文):Yun-Gho LeuTa-Wei Shou
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:區間直覺模糊集合區間直覺模糊值多屬性決策機率密度函數轉換矩陣U-二次方程式分佈z分數矩陣
外文關鍵詞:Interval-Valued Intuitionistic Fuzzy SetsInterval-Valued Intuitionistic Fuzzy ValuesMultiattribute Decision MakingProbability Density FunctionTransformed MatrixU-Quadratic Distributionz-score Matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Abstract in Chinese i
Abstract in English ii
Acknowledgements iii
Contents…… iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Literature 2
1.3 Organization of This Thesis 4
Chapter 2 Preliminaries 5
2.1 Interval-Valued Intuitionistic Fuzzy Sets and Interval-Valued Intuitionistic Fuzzy Values 5
2.2 Largest Range of Interval-Valued Intuitionistc Fuzzy Values 6
2.3 Score Function and Accuracy Function of Interval-Valued Intuitionistic Fuzzy Values……………………………………………6
2.4 Ranking Method of Interval-Valued Intuitionisyic Fuzzy Values….. 6
2.5 Some Definitions in Statistics 7
2.6 U-Quadratic Distribution 8
2.7 Summary 8
Chapter 3 Multiattribute Decision Making Based on Probability Density Functions and the Variances and Standard Deviations of Largest Ranges of Evaluating Interval-Valued Intuitionistic Fuzzy Values 10
3.1 A Review of Chen and Fan’s Multiattribute Decision Making Method 10
3.2 Drawbacks of Chen and Fan’s Multiattribute Decision Making Method 12
3.3 Counter Examples 13
3.4 Summary 31
Chapter 4 Multiattribute Decision Making Based on U-Quadratic Distribution of Intervals and the Transformed Matrix in Interval-Valued Intuitionistic Fuzzy Environments 32
4.1 A New Multiattribute Decision Making Method 32
4.2 Application Examples 36
4.3 Summary 83
Chapter 5 Conclusions 84
5.1 Contributions of This Thesis 84
5.2 Future Research 84
References.... 85
[1] B. Apolloni, S. Bassis, J. Rota, G. L. Galliani, M. Gioia, and L. Ferrari, “A neuro fuzzy algorithm for learning from complex granules,” Granular Computing, vol. 1, no. 4, pp. 225-246, 2016.
[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, 87-96, 1986.
[3] K. Atanassov and G. Gargov, “Interval valued intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 31, no. 3, pp. 343-349, 1989.
[4] O. Castillo, L. Cervantes, P. Melin, and W. Pedrycz, “A new approach to control of multivariable systems through a hierarchical aggregation of fuzzy controllers,” Granular Computing, vol. 4, no. 1, pp. 1-13, 2019.
[5] S. M. Chen and C. H. Chiou, “Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 1905-1916, 2015.
[6] S. M. Chen and Y. C. Chu, “Multiattribute decision making based on U-quadratic distribution of intervals and the transformed matrix in interval-valued intuitionistic fuzzy environments,” Information Sciences, vol. 537, pp. 30-45, October 2020.
[7] S. M. Chen and K. Y. Fan, “Multiattribute decision making based on probability density functions and the variances and standard deviations of largest ranges of evaluating interval-valued intuitionistic fuzzy values,” Information Sciences, vol. 490, pp. 329-343, 2019.
[8] S. M. Chen and C.M. Huang, “Generating weighted fuzzy rules from relational database systems for estimating null values using genetic algorithms,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp. 495-506, 2003.
[9] S. M. Chen and W. H. Han, “A new multiattribute decision making method based on multiplication operations of interval-valued intuitionistic fuzzy values and linear programming methodology, Information Sciences, vol. 429, pp. 421-432, 2018.
[10] S. M. Chen and W. H. Han, “An improved MADM method using interval-valued intuitionistic fuzzy values,” Information Sciences, vol. 467, pp. 489-505, 2018.
[11] S. M. Chen and Z. C. Huang, “Multiattribute decision making based on interval-valued intuitionistic fuzzy values and linear programming methodology,” Information Sciences, vol. 381, pp. 341-351, 2017.
[12] S. M. Chen and Z. C. Huang, “Multiattribute decision making based on interval-valued intuitionistic fuzzy values and particle swarm optimization techniques,” Information Sciences, vol. 397-398, pp. 206-218, 2017.
[13] S. M. Chen and L. W. Kuo, “Multiattribute decision making based on non-linear programming methodology with hyperbolic function and interval-valued intuitionistic fuzzy values,” Information Sciences, vol. 453, pp. 379-388, 2018.
[14] S. M. Chen, L. W. Kuo, and X. Y. Zou, “Multiattribute decision making based on Shannon’s information entropy, non-linear programming methodology, and interval-valued intuitionistic fuzzy values,” Information Sciences, vol. 465, pp. 404-424, 2018.
[15] S. M. Chen, L. W. Lee, H. C. Liu, and S. W. Yang, “Multiattribute decision making based on interval-valued intuitionistic fuzzy values,” Expert Systems with Applications, vol. 39, no. 12, pp. 10343-10351, 2012.
[16] S. M. Chen and W. H. Tsai, “Multiple attribute decision making based on novel interval-valued intuitionistic fuzzy geometric averaging operators,” Information Sciences, vol. 367-368, pp. 1045-1065, 2016.
[17] S. M. Chen, M. W. Yang, S. W. Yang, T. W. Sheu, and C.J. Liau, “Multictiteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets,” Expert Systems with Applications, vol. 39, no. 15, pp. 12085-12091, 2012.
[18] S. H. Cheng, “Autocratic multiattribute group decision making for hotel location selection based on interval-valued intuitionistic fuzzy sets,” Information Sciences, vol. 427, pp. 77-87, 2018.
[19] H. S. Chiang, M. Y. Chen, and Z. W. Wu, “Applying fuzzy Petri nets for evaluating the impact of bedtime behaviors on sleep quality,” Granular Computing, vol. 3, no. 4, pp. 321-332, 2018.
[20] H. Garg, “Some arithmetic operations on the generalized sigmoidal fuzzy numbers and its application,” Granular computing, vol. 3, no. 1, pp. 9-25, 2018.
[21] A. M. Ibrahim, T. O. William West, “Induction of shadowed sets from fuzzy sets,” Granular Computing, vol. 4, no. 1, pp. 27-38, 2019.
[22] Y. Jiang, Z. Xu, and Y. Shu, “Interval-valued intuitionistic multiplicative aggregation in group decision making,” Granular Computing, vol. 2, no. 4, pp. 387-407, 2017.
[23] Y. F. Lai, M. Y. Chen, and H. S. Chiang, “Constructing the lie detection system with fuzzy reasoning approach,” Granular Computing, vol. 3, no. 2, pp. 169-176, 2018.
[24] L. W. Lee and S. M. Chen, “Fuzzy risk analysis based on fuzzy numbers with different shapes and different deviations,” Expert Systems with Applications, vol. 34, no. 4, pp. 2763-2771, 2008.
[25] D. F. Li , “TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 299-311, 2010.
[26] H. Liu and M. Cocea, “Fuzzy information granulation towards interpretable sentiment analysis,” Granular Computing, vol. 2, no. 4, pp. 289-302, 2017.
[27] H. Liu and L. Zhang, “Fuzzy rule-based systems for recognition-intensive classification in granular computing context,” Granular Computing, vol. 3, no. 4, pp. 355-365, 2018.
[28] P. Liu, “Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators,” Computers & Industrial Engineering, vol. 108, pp. 199-212, 2017.
[29] P. Liu, S. M. Chen, and Y. Wang, “Multiattribute group decision making based on intuitionistic fuzzy partitioned Maclaurin symmetric mean operators,” Information Sciences, vol. 512, pp. 830-854, 2020.
[30] S. Liu, Z. Xu, and J. Gao, “A fuzzy compromise programming model based on the modified S-curve membership functions for supplier selection,” Granular Computing, vol. 3, no. 4, pp. 275-283, 2018.
[31] P. Newbold, W. L. Carlson, and B. Thorne, Statistics for Business and Economics, Pearson Boston, MA, 2013.
[32] X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg, “Exponential similarity measures for Pythagorean fuzzy sets and their applications to pattern recognition and decision-making process,” Complex & Intelligent Systems, vol. 5, no. 2, pp. 217-228, 2019.
[33] L. M. Surhone, M. T. Timpledon, and S. F. Marseken, U-Quadratic Distribution, VDM Publishing, 2010.
[34] C. Y. Wang and S. M. Chen, “Multiple attribute decision making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method,” Information Sciences, vol. 397-398, pp. 155-167, 2017.
[35] C. Y. Wang and S. M. Chen, “An improved multiattribute decision making method based on new score function of interval-valued intuitionistic fuzzy values and linear programming methodology,” Information Sciences, vol. 411, pp. 176-184, 2017.
[36] C. Y. Wang and S. M. Chen, “A new multiple attribute decision making method based on linear programming methodology and novel score function and novel accuracy function of interval-valued intuitionistic fuzzy values,” Information Sciences, vol. 438, pp. 145-155, 2018.
[37] G. Wang, Y. Li, and X. Li, “Approximation performance of the nonlinear hybrid fuzzy system based on variable universe,” Granular Computing, vol. 2, no. 2, pp. 73-84, 2017.
[38] Z. Wang , K. W. Li, and W. Wang, “An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights,” Information Sciences, vol. 179, pp. 3026-3040, 2009.
[39] Z. S. Xu, “Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making,” Control and Decision, vol. 22, no. 2, pp. 215-219, 2007. (in Chinese)
[40] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965.
[41] S. Zeng, S. M. Chen, and K. Y. Fan, “Interval-valued intuitionistic fuzzy multiple attribute decision making based on nonlinear programming methodology and TOPSIS method,” Information Sciences, vol. 506, pp. 424-442, 2020.
[42] Z. Zhitao and Z. Yingjun, “Multiple attribute decision making method in the frame of interval-valued intuitionistic fuzzy sets,” in Proceedings of the 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery, Shanghai, China, 2011, pp. 192-196 .
[43] X. Zhou, “Membership grade mining of mutually inverse fuzzy implication propositions,” Granular Computing, vol. 2, no. 1, pp. 55-62, 2017.
電子全文 電子全文(網際網路公開日期:20250801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 根據機率密度函數及區間直覺模糊評估值的最大區間範圍之變異數和標準差的多屬性決策新方法
2. 根據區間Type-2模糊集合以作群體決策及根據區間直覺模糊值以作多屬性決策之新方法
3. 根據區間直覺模糊值之得分函數及分數矩陣之平均數及變異數以作多屬性決策之新方法
4. 根據區間直覺模糊值、區間直覺模糊加權算數平均運算子、及非線性規劃法以作模糊多屬性決策之新方法
5. 根據區間之Beta分佈、區間之期望值、及區間直覺模糊值之得分函數以作多屬性決策之新方法
6. 根據區間直覺模糊值之得分函數及正規化分數矩陣以作多屬性決策之新方法
7. 根據區間直覺模糊值及線性規劃法以作多屬性決策之新方法
8. 根據區間Type-2模糊集合及區間直覺模糊集合以作多屬性決策之新方法
9. 根據模糊邏輯關係、模糊趨勢邏輯關係群、K-Means分群演算法、相似度測量及粒子群最佳化技術以作模糊預測之新方法
10. 根據非線性規劃及區間直覺模糊值之新的得分函數以作多屬性決策之新方法
11. 根據區間直覺模糊值之新的得分函數及區間直覺模糊值之冪運算子以作多屬性決策之新方法
12. 根據多邊形模糊集合以作自適性模糊內插推論 及根據區間Type-2模糊集合以作自適性加權式模糊內插推論之新方法
13. 發明專利申請權歸屬認定之研究
14. 純金屬和合金有序排列奈米管陣列的製備和性質分析
15. 人工智慧應用於技術支援詐騙偵測與特徵分析