(34.201.11.222) 您好!臺灣時間:2021/02/25 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡自勳
研究生(外文):Tzu-Hsun Hu
論文名稱:智慧型微電網併聯多模組變流器之適應性全域滑動模式控制設計獨立供電與市電併網策略
論文名稱(外文):Design of Stand-Alone and Grid-Connected Power Supply Strategies Based on Adaptive Total Sliding-Mode Control for Multiple Module Inverters in Smart Micro-Grid
指導教授:魏榮宗
指導教授(外文):Rong-Jong Wai
口試委員:段柔勇李政道楊念哲
口試委員(外文):Rou-Yong DuanJeng-Dao LeeNien-Che Yang
口試日期:2020-01-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:118
中文關鍵詞:併聯變流器主僕控制里亞普諾穩定理論全域滑動模式控制適應性控制比例積分控制
外文關鍵詞:Parallel invertersMaster-slave controlLyapunov stability theoremTotal sliding-mode controlAdaptive controlProportionalintegral control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨在於研製智慧型微電網併聯多模組變流器之適應性全域滑動模式控制系統,設計獨立供電與市電併網策略,由於該電路為多模組變流器併聯使用,因此控制架構基於主僕控制理論而發展。首先以設計之電路架構規劃各變流器模組基本控制準則,而控制準則在獨立供電情況下是控制變流器模組之輸出電壓以及電感電流,以有效抑制內部迴圈電流的產生。市電併網情況下,則是控制各組變流器之電感電流,加以控制各台變流器之輸出功率及單位功因併網。本文將使用適應性全域滑動模式控制各變流器模組,並使用傳統滑動模式控制及比例積分控制做為比較,且在系統分別於獨立供電模式及市電併網模式之情況下,進行加卸載響應、功率分配以及負載變動之各種狀況進行測試。此外,藉由里亞普諾穩定理論(Lyapunov Stability Theorem)證明整個控制系統穩定,以達到智慧型微電網併聯多模組變流器之高性能獨立供電以及高功因市電併網之目的。本文透過模擬軟體Matlab進行數值模擬分析,並以實作電路驗證本文所發展之適應性全域滑動模式控制應用於智慧型微電網併聯多模組變流器獨立供電與市電併網策略的可行性,其結果為適應性全域滑動模式控制相較於傳統滑動模式控制及比例積分控制更具有強健性,使得電路更快速得恢復至穩定之狀態。
The main purpose of this thesis is to design stand-alone and grid-connected power supply strategies based on adaptive total sliding-mode control for multiple module inverters in a smart micro-grid. Because of the utilization of multi-module inverters, the control strategy is designed in the sense of the master-slave control theory. As for the stand-alone power supply, the control criterion is to control the output voltage and the inductor current of the inverter module for avoiding the occurrence of inner loop currents. As for the grid-connected power supply, inductor currents in multi-module inverters are controlled for manipulating the output power of each inverter and maintaining the grid connection with a unity power factor. This thesis will apply adaptive total sliding-mode control (ATSMC) frameworks to multi-module inverters, and compare related responses with the ones in traditional sliding-mode control (SMC) and proportional-integral control (PIC) under different operational conditions including loading, unloading, power dispatch changing, load variation, inverter plug-in and shut-down. Moreover, the system stabilities of the ATSMC schemes for multi-module inverters are verified by the Lyapunov stability theorem to achieve the objectiveness of high-performance standalone power supply and grid-connection with a unity power factor. Numerical simulations carried out by the Matlab software and experimental results impelemted in a digital signal processor (DSP) are provided to verify the superiority of the proposed ATSMC frameworks in comparisons with traditional SMC and PIC schemes. As a result, the performance of the proposed ATSMC strategy is more robust than the framework of PIC.
中文摘要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章 前言
第二章 智慧型微電網併聯多模組變流器獨立供電模式
2.1. 獨立供電模式之小訊號模型
2.2. 獨立供電比例積分控制
第三章 智慧型微電網併聯多模組變流器市電併網模式
3.1. 市電併網供電之小訊號模型
3.2. 市電併網比例積分控制
3.3. 數位鎖相迴路控制
第四章 適應性全域滑動模式控制
4.1. 獨立供電情況
4.1.1傳統滑動模式控制設計
4.1.2全域滑動模式控制
4.1.3適應性全域滑動模式控制
4.2. 市電併網情況
4.2.1傳統滑動模式控制設計
4.2.2全域滑動模式控制
4.2.3適應性全域滑動模式控制
第五章 數值模擬
5.1. 比例積分控制
5.2. 傳統滑動模式控制
5.3. 適應性全域滑動模式控制
第六章 實作結果
6.1 周邊電路介紹
6.1.1 驅動電路
6.1.2 採樣電路
6.2 獨立供電模式
6.3 市電併網模式
第七章 研究結論及未來展望
7.1 研究結論
7.2 未來展望
參考文獻
[1] F. D. Kanellos, E. Grigoroudis, C. Hope, V. S. Kouikoglou, and Y. A. Phillis, “Optimal GHG emission abatement and aggregate economic damages of global warming,” IEEE Systems Journal, vol. 11, no. 4, pp. 2784-2793, 2017.
[2] A. Qazi, F. Hussain, N. A. Rahim, G. Hardaker, D. Alghazzawi, K. Shaban, and K. Haruna, “Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions,” IEEE Access, vol. 7, pp. 63837-63851, 2019.
[3] B. K. Bose, “Power electronics, smart grid, and renewable energy systems,” Proc. IEEE, vol. 105, no. 11, pp. 2011-2018, 2017.
[4] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3702-3714, 2008.
[5] K. Wang, X. Huang, B. Fan, Q.Yhan, G. Li, and M. L. Crow, “Decentralized power sharing control for parallel-connected inverters in islanded single-phase micro-grids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6721-6730, 2018.
[6] G. He, M. Chen, W. Yu, N. He, and D. Xu, “Design and analysis of multiloop controllers with DC suppression loop for paralleled UPS inverter system,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6494-6506, 2014.
[7] L. Zhang, K. Sun, Y. Xing, and J. Zhao, “Parallel operation of modular single-phase transformerless grid-tied PV inverters with common DC bus and AC bus,” IEEE Emerging and Selected Topics in Power Electron., vol. 3, no. 4, pp. 858-869, 2015.
[8] B. B. Johnson, S. V. Dhople, A. O. Hamadeh, and P. T. Krein, “Synchronization of parallel single-phase inverters with virtual oscillator control,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 6124-6138, 2014.
[9] K. P. Huang, Y. Wang, and R. J. Wai, “Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid,” IEEE Power Electron., vol. 34, no. 3, pp. 2938- 2955, 2019.
[10] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. Circuit Syst., vol. 55, no. 3, pp. 953-964, 2008.
[11] B. Wai, J. M. Guerrero, J. C. V´asquez, and X. Gao, “A circulating-current suppression method for parallel-connected voltage-source inverters with common DC and AC buses” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3758-3769, 2017.
[12] X. Guo and W. Chen, “Control of multiple power inverters for more electronics power systems: A review,” CES Trans.Electrical Machine and Systems, vol. 2, no. 3, pp. 255-263, 2018.
[13] S. Kawano, S. Yoshizawa, and Y. Hayashi, "Centralized voltage control method using voltage forecasting by JIT modeling in distribution networks,” 2016 IEEE/PES Transmission and Distribution Conf. and Exposition, Dallas, TX, pp. 1-5, 2016.
[14] X. Shen, H. Wang, J. Li, Q. Su, and L. Gao, “Distributed secondary voltage control of islanded microgrids based on RBF-neural network sliding-mode technique,” IEEE Access, vol. 7, pp. 65616- 65623, 2019.
[15] W. Zhang, W. Wang, H. Liu, and D. Xu, “A disturbance rejection control strategy for droop-controlled inverter based on super-twisting algorithm,” IEEE Access, vol. 7, pp. 27037- 27046, 2019.
[16] S. Xu, J. Wang, and J. Xu, “A current decoupling parallel control strategy of single-phase inverter with voltage and current dual closed-loop feedback,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1306-1313, 2013.
[17] L. Shu, W. Chen, and X. Jiang, “Decentralized control for fully modular input-series output-parallel (ISOP) inverter system based on the active power inverse-droop method,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7521-7530, 2018.
[18] J. Han and J. H. Song, “Phase current-balance control using DC-link current sensor for multiphase converters with discontinuous current mode considered,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4020-4030, 2016.
[19] M. Borrega, L. Marroyo, R. Gonz´alez, J. Balda, and J. L. Agorreta, “Modeling and control of a master-slave PV inverter with N-paralleled inverters and three-phase three-limb inductors,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2842-2855, 2013.
[20] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, 2009.
[21] V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. V. Dhople, “Reduced-order aggregate model for parallel-connected single-phase inverters,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 824-837, 2019.
[22] J. Jiao and R. M. Nelms, “Regulating output impedance using a PI controller to improve the stability of a single phase inverter under weak grid,” IEEE Conf. Environment and Electrical Engineering (EEEIC), 2016.
[23] M. Parvez, M. F. M. Elias, and N. A. Rahim, “Performance analysis of PR current controller for single-phase inverters,” IET Conf. Clean Energy and Technology, 2016.
[24] R. J. Wai, C. Y. Lin, Y, C, Huang, and Y. R. Chang, “Design of high-performance stand-alone and grid-connected inverter for distributed generation applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1542-1555, 2013.
[25] C. Dai, J. Yang, Z. Wang, and S. Li, “Universal active disturbance rejection control for non-linear systems with multiple disturbances via a high-order sliding mode observer,” IET Control Theory & Appl., vol. 11, no. 8, pp. 1194-1204, 2017.
[26] O. Kukrer, H. Komurcugil, and A. Doganalp, “A three-level hysteresis function approach to the sliding-mode control of single-phase UPS inverters,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3477-3486, 2009.
[27] H. Komurcugil, “Rotating-sliding-line-based sliding-mode control for single-phase UPS inverters,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3719-3726, 2012.
[28] B. Guo, M. Su, Y. Sun, H. Wang, H. Dan, Z. Tang, and B. Cheng, “A robust second-order sliding mode control for single-phase photovoltaic grid-connected voltage source inverter,” IEEE Access, vol. 7, pp. 53202-53212, 2019.
[29] R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 240-250, 2008.
[30] M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, in 3rd ed., New Jersey: Prentice Hall, 2004.
[31] J. D. Irwin and R. M. Nelms, Engineering Circuit Analysis, in 11th ed., New Jersey: Wiley, 2015.
[32] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” ASME Trans., vol. 64, pp. 759-768, 1942.
[33] Y. Xu and F. X. Li, “Adaptive PI control of STATCOM for voltage regulation,” IEEE Trans. Power Del., vol. 29, no. 3, pp. 1002-1011, 2014.
[34] A. S. Bazanella, L. F. A. Pereira, and A. Parraga, “A new method for PID tuning including plants without ultimate frequency,” IEEE Trans. Control Syst. Technol., vol. 25, no. 2, pp. 637-644, 2017.
[35] R. J. Wai, Y. F. Lin, and Y. K. Liu, “Design of adaptive fuzzy-neural-network control for a single-stage boost inverter,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7282-7298, 2015.
[36] V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. V. Dhople, “Reduced-order aggregate model for parallel-connected single-phase inverters,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 824-837, 2019.
[37] Z. Liu, J. Liu, X. Hou, Q. Dou, D. Xue, and T. Liu, “Output impedance modeling and stability prediction of three-phase paralleled inverters with master–slave sharing scheme based on terminal characteristics of individual inverters,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5306-5320, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔