( 您好!臺灣時間:2021/04/20 12:25
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Wei-Ting Chen
論文名稱:基於IEEE 802.15.4考量多重優先權之額外競爭存取機制應用於智慧電網研究
論文名稱(外文):An Additional Contention Access Period (ACAP) Mechanism with Different Priorities for Smart Grid in IEEE 802.15.4 Home Area Network
指導教授(外文):Bih-Hwang Lee
口試委員(外文):Tein-Yaw ChungJiann-Liang ChenChwan-Chia Wu
中文關鍵詞:智慧電網IEEE 802.15.4CSMA/CA物聯網家庭區域網路
外文關鍵詞:smart gridIEEE802.15.4CSMA/CAinternet of thingHAN
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大型電力基礎建設提供給民眾生活便利,但電力供應端為了改進電力效率來建立具智能式輸配電及監測客戶端在家中用電等功能,更進一步使電力網路智慧化,讓電力能源使用效率能加以改善,未來電力供應商將智慧電網(Smart Grid)視為近年來研究方向。為了滿足控制及監測家庭配電,無線感測網路(wireless sensor network; WSN) 在智慧電網中扮演缺一不可的角色。
複數個感測裝置能無線感測網路,此類網路中每裝置都具檢測或偵測到周遭環境變化功能且以無線傳輸來進行,而此類網路具在短距離內可傳輸、低功耗及支援大量感測裝置特性,而這些特點能滿足在家庭區域網路(home area network; HAN)下所具備基本條件。
在上述網路中,佈署智慧型電表能藉由雙向資訊來了解關於各家電耗電情況、控制訊號目前狀態及用電價目表,為了讓上述訊號快速地抵達客戶端,智慧電網標準中有嚴格地訂定特殊訊號具有特殊服務需求,在IEEE 802.15.4標準,不同種信號可接受最大網路延遲時間也有所差異, 假設信號無法在規範的網路延遲時間內傳輸至目的端,其會造成突發性人員的傷亡及個人財產損失。以標準而言,無明確規範各訊號的服務傳輸品質導致無符合於智慧電網環境中對傳輸品質需求。
本篇論文中將智慧電網概念結合於家庭區域網路模擬環境且分為資料及控制訊號兩種訊號,提出基於IEEE 802.15.4考量多重優先權之額外競爭存取機制應用於智慧電網。模擬結果顯示,ACAP機制與IEEE 802.15.4標準相比,可有效提升產能並降低訊框送到目的端延遲時間。
Large-scale power infrastructure can provide convenience for the people, but the objective of the power supply is to improve power efficiency to build intelligent power transmission and distribution and monitor the power consumption of the customer at home, further intelligentizing the power network can make the power efficiency be improved. The power suppliers will regard the Smart Grid as a research direction in recent years. To control and monitor home power distribution, wireless sensor network (WSN) plays an indispensable role in the smart grid.
A plurality of sensor devices can form wireless sensor network. Each device in this network can detect ambient environmental changes via wireless transmission. These networks are capable of transmission over short distances, low power consumption, and support for a wide range of sensor device that can meet the basic requirement in home area network (HAN).
In the above network, the smart meter can be used to understand the power consumption of each appliance, the current status of the control signal, and the electricity billing. In order to allow the above signals to reach the client quickly, the smart grid has strict requirements for particular services with special service requirements. In the IEEE 802.15.4 standard, the maximum network delay for different types of signals is also different. Assuming that the signal cannot be transmitted to the destination within the specified network delay, it can cause sudden casualties and personal property damage. In terms of standard, the quality of service transmission without clear specification of each signal leads to no compliance with the transmission quality requirements in the smart grid environment.
In this thesis, the concept of smart grid is integrated into HAN environment and divided into two types of data and control signals. An additional contention access period mechanism based on IEEE 802.15.4 considerations for multiple priorities is applied to the smart grid. The simulation results show that the ACAP can effectively increase the goodput and reduce the delay of the frame to the destination end compared with the IEEE 802.15.4 standard.
摘要 I
Abstract I
Acknowledgments IV
Table of Contents V
List of Symbols VIII
List of Figures XI
List of Tables XIV
Chapter 1 Introduction 1
1.1Research Motivation 1
1.2 Organization of this thesis 6
Chapter 2 Background and Related Works 7
2.1 Overview of ZigBee/IEEE 802.15.4 7
2.1.1 Device Category 8
2.1.2 Network Topology 9
2.1.3 Superframe Structure 10
2.1.4 Data Transfer Model 12
2.1.5 Introduction of PHY Layer 17
2.1.6 Introduction of MAC Sublayer 20
2.1.7 CSMA/CA mechanism 21
2.1.8 GTS allocation 23
2.1.9 Frame Format 26
2.2 Overview of Smart Grid 34
2.2.1 Advanced metering infrastructure 35
2.3 Related works 38
2.3.1 Quality of service 38
2.3.2 Parameter adjustment method 39
2.3.3 Modify the superframe structure 39
2.3.4 GTS allocation method 40
Chapter 3 ACAP mechanism 41
3.1 Proposed Method 41
3.2 Modify CSMA/CA parameters setting 42
3.3 GTS allocation mechanism 45
3.3.1 The modification of GTS related frame format 45
3.3.2 The timing for opportunity of the use of GTS 48
3.3.3 The segmentation of GTS mechanism 48
3.4 ACAP mechanism 50
3.4.1 The function of ACAP 50
3.4.2 ACAP algorithm 51
3.5 The flowchart of coordinator 53
3.6 The flowchart of the device 55
Chapter 4 System simulation and analysis 57
4.1 Simulation scenario and parameter settings 57
4.2 Performance Evaluation 62
4.2.1 Goodput 62
4.2.2 Delay 63
4.2.3 Average frame drop ratio 63
4.3 Analysis of results 64
4.3.1 Analysis and comparison of goodput 64
4.3.2 Analysis and comparison of average delay 67
4.3.3 Analysis and comparison of average frame drop ratio 70
4.3.4 Analysis and comparison of average frame success ratio 73
Chapter 5 Conclusions and future works77
References 79
[1]經濟部能源局,101 年台灣電力排放係數,網址: http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=114 , 上 網 日 期 :2014-05-31。
[2]V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati and G.P. Hancke, Smart Grid Technologies: Communication Technologies and Standards,” IEEE Transactions on Industrial Informatics, vol.7, issue 4, pp.529-539, Nov. 2011.
[3]Román Lara, Diego Benítez, Antonio Caamaño, Marco Zennaro and José Luis Rojo-Álvarez, “On Real-Time Performance Evaluation of Volcano-Monitoring Systems With Wireless Sensor Networks”, in IEEE Sensors Journal, vol. 15, no. 6, pp. 3514-3523, Jun 2015.
[4]Muhammad Sajjad Akbar, Hongnian Yu and Shuang Cang, “TMP: Tele-Medicine Protocol for Slotted 802.15.4 With Duty-Cycle Optimization in Wireless Body Area Sensor Networks”, in IEEE Sensors Journal, vol. 17, no. 6, pp. 1925-1936, Mar 2017.
[5]L. Leonardi, G. Patti, F. Battaglia and L. L. Bello, “Simulative assessments of the IEEE 802.15.4 CSMA/CA with Priority Channel Access in Structural Health Monitoring scenarios”, IEEE 15th International Conference on Industrial Informatics(INDIN), pp.375-380, Jul 2017.
[6]H. S. Kim, J.-H. Song and S. Lee, “Energy-efficient traffic scheduling in IEEE
802.15.4 for home automation networks,” Consumer Electronics, IEEE Transactions on, vol.53, issue 2, pp.369-374, May 2007.
[7]IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp.1-314, Sept. 5 2011.
[8]彭開瓊、陳志堅、陳仁宗、高幸滿,「科技家庭與傳統家庭用電效率比較:DEA 的應用」,碳經濟,第19期,頁20-33,2011。
[9]Z.M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki and Y. Nozaki, “Toward intelligent machine-to-machine communications in smart grid,” IEEE Communications Magazine, vol.49, issue 4, pp.60-65, Apr 2011.
[10]M. Yigit, E.A. Yoney and V.C. Gungor, “Performance of MAC protocols for wireless sensor networks in harsh smart Grid environment,” Communications and Networking (BlackSeaCom), 2013 First International Black Sea Conference on, pp.50,53, 3-5 July 2013.
[11]C. Gomez and J. Paradells, “Wireless home automation networks: A survey of architectures and technologies,” Communications Magazine, IEEE, vol.48, issue 6, pp.92-101, June 2010.
[12]A. KOUBAA, M. ALVES and E. TOVAR, “i-GAME: an implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks”, 18th Euromicro Conference on Real-Time Systems (ECRTS'06), pp. 183-192, Jul 2006.
[13]M. Khanafer, M. Guennoun, and H. T. Mouftah, “A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks”, IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 856-876, Dec 2014.
[14]D. J. Leeds, “The Smart Grid In 2010 : Market segments, applications and industry players,” GTM Research, pp.1-145, July 2009.
[15]董勁宏,「在IEEE 802.15.4下智慧電網中家庭區域網路之控制訊號服務品質分析與研究」,碩士論文,國立臺灣科技大學,臺北市,2013。
[16]M. M. Ahmed and S. M. Sadakatul Bari, “A Novel Spiral Back-off Mechanism for Wireless Sensor Networks MAC Protocol in Smart Grid System”, 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5, Feb. 2015.
[17]M. S. Akbar, H. Yu and S. Cang, “TMP: Tele-Medicine Protocol for Slotted 802.15.4 With Duty-Cycle Optimization in Wireless Body Area Sensor Networks”, IEEE Sensors Journal, vol. 17, no. 6, pp. 1925-1936, Mar 2017.
[18] G. Anastasi, M. Conti and M. D. Francesco, “A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks”, IEEE Transactions on Industrial Informatics, vol. 7, no.1, pp. 52-65, Feb. 2011
[19]張軒豪,「IEEE 802.15.4用於智慧電網家庭區域網路之有效傳輸機制研究」,碩士論文,國立臺灣科技大學,臺北市,2014。
[20]Jongwook Lee, Jae Yeol Ha, Joseph Jeon, Dong Sung Kim, and Wook HyunKwon, ”ECAP: A Bursty Traffic Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks” in proceeding of Vehicular Technology Conference, pp.203-207 April,2007.
[21]M. U. Harun Al Rasyid, B. H. Lee and A. Sudarsono, “PEGAS: Partitioned GTS Allocation Scheme for IEEE 802.15.4 Networks”, 2013 International Conference on Computer, Control, Informatics and Its Applications, pp. 29-32, Nov. 2013.
[22]C. L. Ho, C. H. Lin, W. S. Hwang and S. M. Chung, “Dynamic GTS Allocation Scheme in IEEE 802.15.4 by Multi-Factor”, 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 457-460, Jul 2012.
[23]Reduan H. Khan and Jamil Y. Khan, “A comprehensive review of the
characteristics and traffic requirements of a smart grid communications network”, Computer Networks, Vol. 57 pp-825–845. 2013.
電子全文 電子全文(網際網路公開日期:20220920)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔