跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/31 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐秉希
研究生(外文):Ping-Hsi Hsu
論文名稱:最小相移鍵控調變脈衝串之起始點偵測研究
論文名稱(外文):Research on The Detection of The Beginning of an MSK Modulated Pulse Train
指導教授:劉馨勤
指導教授(外文):Hsin-Chin Liu
口試委員:張立中吳玉龍林俊霖
口試委員(外文):Li-Chung ChangYU-LUNG WUChun-Lin Lin
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:最小相移鍵控調變起始點檢測機器學習分類
外文關鍵詞:MSK modulationSignal starting point detectionMachine learningClassification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
縮寫索引 X
符號索引 XI
第1章 緒論 1
1.1 研究動機 1
1.2 論文貢獻 1
1.3 章節概要 2
第2章 文獻探討與背景介紹 3
2.1 原始數據 3
2.1.1 最小相移鍵控(Minimum Shift Keying, MSK) 4
2.1.2 跳頻展頻(Frequency Hopping Spread Spectrum , FHSS) 5
2.1.3 訊息格式 5
2.2 預處理 7
2.2.1 特徵提取(Feature Extraction) 7
2.2.2 特徵縮放(Feature Scaling) 11
2.2.3 特徵選擇(Feature Selection) 12
2.3 機器學習 13
2.3.1 模型選擇(Model Selection) 14
2.3.2 交叉驗證(Cross-Validation) 24
2.3.3 超參數最佳化(Hyperparameter Optimization) 26
2.4 模型評估 27
2.4.1 學習曲線(Learning Curve)和驗證曲線(Validation Curve) 27
2.4.2 混淆矩陣(Confusion Matrix) 28
第3章 基於機器學習的起始點檢測方法 30
3.1 基於機器學習的起始點檢測方法架構 30
第4章 模擬與分析結果 36
4.1 分類器演算法效能分析 36
4.1.1 特徵選擇分析 36
4.1.2 模型選擇分析 37
4.2 整體演算法效能分析 43
4.2.1 校正偏差方法分析 44
4.2.2 提出訊號起始點檢測方法分析 44
第5章 結論與未來方向 47
參考文獻 49
[1] L. Rabiner and B.-H. Juang, Fundamentals of speech recognition. 1993.
[2] M. H. Savoji, "A robust algorithm for accurate endpointing of speech signals," Speech communication, vol. 8, no. 1, pp. 45-60, 1989.
[3] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation and Noise, 7th ed. 2014.
[4] S. Haykin and M. Moher, Communication Systems, 5th ed. 2017.
[5] C. H. Kao and N. P. School, Performance Analysis of a JTIDS/Link-16-type Waveform Transmitted Over Slow, Flat Nakagami Fading Channels in the Presence of Narrowband Interference. Naval postgraduate school monterey ca, 2008.
[6] N. Grumman, "Understanding voice and data link networking," Accessed on May, vol. 9, p. 2014, 2013.
[7] 梅文华 and 蔡善法, JTIDS/Link16 数据链. 北京: 国防工业出版社, 2007.
[8] L. R. Rabiner and M. R. Sambur, "An algorithm for determining the endpoints of isolated utterances," Bell System Technical Journal, vol. 54, no. 2, pp. 297-315, 1975.
[9] J. Haigh and J. Mason, "Robust voice activity detection using cepstral features," in Proceedings of TENCon'93. IEEE Region 10 International Conference on Computers, Communications and Automation, 1993, vol. 3, pp. 321-324.
[10] J.-l. Shen, J.-w. Hung, and L.-s. Lee, "Robust entropy-based endpoint detection for speech recognition in noisy environments," in Fifth international conference on spoken language processing, 1998.
[11] C. Jia and B. Xu, "An improved entropy-based endpoint detection algorithm," in International Symposium on Chinese Spoken Language Processing, 2002.
[12] H. Liang-Sheng and Y. Chung-Ho, "A novel approach to robust speech endpoint detection in car environments," in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, vol. 3, pp. 1751-1754
[13] B. P. Bogert, "The quefrency alanysis of time series for echoes; Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking," Time series analysis, pp. 209-243, 1963.
[14] C. E. Shannon, "A mathematical theory of communication," Bell system technical journal, vol. 27, no. 3, pp. 379-423, 1948.
[15] L. Rabiner and M. Sambur, "Voiced-unvoiced-silence detection using the Itakura LPC distance measure," in ICASSP'77. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1977, vol. 2, pp. 323-326.
[16] J.-C. Junqua, B. Mak, and B. Reaves, "A robust algorithm for word boundary detection in the presence of noise," IEEE Transactions on speech and audio processing, vol. 2, no. 3, pp. 406-412, 1994.
[17] S. Raschka and V. Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd, 2019.
[18] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," 2015.
[19] R. Bellman, "Dynamic programming," Science, vol. 153, no. 3731, pp. 34-37, 1966.
[20] R. E. Bellman, Adaptive control processes: a guided tour. Princeton university press, 2015.
[21] G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE transactions on information theory, vol. 14, no. 1, pp. 55-63, 1968.
[22] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of machine learning research, vol. 3, pp. 1157-1182, 2003.
[23] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang, "Benchmark for filter methods for feature selection in high-dimensional classification data," Computational Statistics & Data Analysis, vol. 143, 2020.
[24] V. Spruyt, "The Curse of Dimensionality in classification," Computer vision for dummies, vol. 21, no. 3, pp. 35-40, 2014.
[25] C. Dai, L. Luo, H. Peng, and Q. Sun, "A Method Based on Support Vector Machine for Voice Activity Detection on Isolated Words," in 2018 13th International Conference on Computer Science & Education (ICCSE), 2018, pp. 1-4.
[26] J. Dey, M. S. B. Hossain, and M. A. Haque, "An Ensemble SVM-based Approach for Voice Activity Detection," in 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 2018, pp. 297-300.
[27] A. Géron, Hands-On Machine Learning with Scikit-Learn & TensorFlow. 2017.
[28] C. J. Burges, "A tutorial on support vector machines for pattern recognition," Data mining and knowledge discovery, vol. 2, no. 2, pp. 121-167, 1998.
[29] V. Vapnik, The nature of statistical learning theory. Springer science & business media, 2013.
[30] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
[31] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144-152.
[32] L. Rokach and O. Maimon, "Top-down induction of decision trees classifiers-a survey," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 35, no. 4, pp. 476-487, 2005.
[33] J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," Journal of machine learning research, vol. 13, no. Feb, pp. 281-305, 2012.
[34] E. Brochu, V. M. Cora, and N. De Freitas, "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning," 2010.
[35] J. Snoek, H. Larochelle, and R. P. Adams, "Practical bayesian optimization of machine learning algorithms," in Advances in neural information processing systems, 2012, pp. 2951-2959.
[36] C. J. Van Rijsbergen, Information retrieval. London; Boston: Butterworths, 1979.
[37] D. E. Knuth, "Seminumerical algorithm," The art of computer programming, 1981.
[38] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," 1995, vol. 14, no. 2, pp. 1137-1145: Montreal, Canada.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊