跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Sikkanthar Diwan Midyeen
研究生(外文):Sikkanthar Diwan Midyeen
論文名稱:AZ91鎂複合材料混合奈米SiCp和Bi、 Sb微量元素的微觀結構演變和增強機械性能(拉伸,壓縮,衝擊和疲勞)之研究。
論文名稱(外文):Microstructure Evolution and Strengthening Mechanical (Tensile, Compression, Impact & Fatigue) Properties on Hybrid Nano-SiCp and Micro Elements (Bi & Sb) of AZ91 Magnesium Composite
指導教授:黃崧任
指導教授(外文):Song-Jeng Huang
口試委員:丘群顏怡文曾有志陳元方
口試委員(外文):Chun ChiuYen, Yee-wenYu Chih TzengYuan-Fang Chen
口試日期:2020-06-29
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:92
中文關鍵詞:AZ9鎂合金奈米SiCp拉伸壓縮衝擊和疲勞
外文關鍵詞:AZ91 Magnesium alloyBismuthAntimonyNano-SiCpTensileCompressionImpact & Fatigue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
於這項研究中,添加了奈米SiCp,微米鉍和銻強化項,通過攪拌鑄造法製備出AZ91鎂基複和金屬材料(Mg MMC)並觀察材料顯微組織結構和力學性能。研究加入不同重量百分比的奈米SiCp(0%,0.5%和1%),鉍(1%)和銻(0.4%)。 觀察材料之微觀結構,它清楚地表明,將奈米SiCp添加到鎂基體材料中,複合材料基體的晶粒尺寸有顯著縮小。研究中基於拉伸,衝擊,壓縮和疲勞等數據等等研究,同時通過拉伸,衝擊,壓縮和疲勞測試表面等測試,已確認增強之機械性能,使用掃描電子顯微鏡(SEM)觀察材料,確認了脆性和韌性性質。 從機械測試結果來看,於拉伸,衝擊和疲勞測試中呈現的0.5%納米SiC以及0.5%SiC + 1%Bi + 0.4%Sb奈米可獲得最好的壓縮性和屈服性能。
In this study, the addition of nano SiCp, micro bismuth and antimony reinforcements were used to develop the microstructural and mechanical properties of as cast AZ91 magnesium metal matrix composites (Mg MMC’s) fabricated by stir casting method. Different weight % of nano SiCp (0%, 0.5% & 1%), bismuth (1%) and antimony (0.4%) were taken into the study. From the microstructure study, it clearly states that addition of nano SiCp into the magnesium matrix significantly reduced the grain size of the matrix of the composites. Enhanced mechanical properties were studied based on the tensile, impact, compression and fatigue data. The brittle and ductile properties were studied by using scanning electron microscopy (SEM) features of tensile, impact, compression and fatigue test surfaces. From the mechanical test results, the best one obtained from which has 0.5% nano SiC presented in tensile, impact and fatigue test as well as nano 0.5%SiC+1%Bi+0.4%Sb has a good compression & yield properties.
1. TABLE OF CONTENTS
Abstract (Chinese)… i
Abstract (English)… ii
Acknowledgement iii
Table of contents v
List of figures viii
List of tables xi
Chapter 1: Introduction 1
1.1 Magnesium 1
1.2 Magnesium alloys 1
1.3 AZ9l magnesium alloy 2
1.4 Tensile behavior of AZ9l alloy 3
1.5 Impact behavior of AZ9l alloy 4
1.6 Compression behavior of AZ9l alloy 5
1.7 Fatigue behavior of AZ9l alloy 6
1.8 Role of minor alloying additions 8
1.9 Theme of the thesis 9
Chapter 2: Literature Review 11
2.1 Introduction 11
2.2 AZ91 (Mg-9% Al-1% Zn-0.2% Mn) Alloy 12
2.3 Effect of alloy compositions 13
2.3.1 Aluminum 13
2.3.2 Zinc 14
2.3.3 Manganese 15
2.4 Role of minor alloying additions 15
2.4.1 Nano SiCp 15
2.4.2 Antimony 16
2.4.3 Bismuth 16
2.5 Literature of Mg alloy reactions with reinforcements on tensile properties 16
2.6 Literature of Mg alloy reactions with reinforcements on impact properties 18
2.7 Literature of Mg alloy reactions with reinforcements on compression properties …………………………………………………………………………………...19
2.8 Literature of fatigue properties in magnesium alloys 19
2.9 Factor influencing the structure and properties of mg-al alloys 21
2.9.1 Discontinuous precipitate 21
2.9.2 Effect of grain size 22
2.10 Summary of literature review 23
Chapter 3: Materials and Experimental Procedure 26
3.1 Flow chart of the process 26
3.2 Experimental materials 27
3.3 Fabrication process 28
3.4 Specimen preparation 31
3.5 Microstructural observation 32
3.5.1 Sample preparation 32
3.6 Optical microscope 33
3.7 Scanning Electron Microscope (SEM) & XRD. 34
3.8 Microhardness test 35
3.9 Density test 36
3.10 Tensile behavior test 36
3.11 Impact behavior test 37
3.12 Compression behavior test 38
3.13 Fatigue behavior test 39
Chapter 4: Results and Discussion 41
4.1 Micro-structural analysis 41
4.2 Mechanical properties 45
4.2.1 Micro-hardness 45
4.2.2 Density & porosity 47
4.2.3 Tensile behavior test 48
4.2.4 Impact behavior test 53
4.2.5 Compression behavior test 56
4.2.6 Fatigue behavior test 59
4.3 Mechanical properties comparision (Tensile, Compression, Impact & fatigue) 62
Chapter 5: Conclusions 64
Chapter 6: References 66
[1] https://www.usgs.gov/centers/nmic/magnesium-compounds-statistics-and-information
[2] http://alliancemagnesium.com/magnesium
[3] Luo, Alan A. "Magnesium: current and potential automotive applications." jom 54, no. 2 (2002): 42-48.
[4] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[5] http://metalpedia.asianmetal.com/metal/magnesium/application.shtml
[6] Wang, Yeshuang, Baode Sun, Qudong Wang, Yanping Zhu, and Wenjiang Ding. "An understanding of the hot tearing mechanism in AZ91 magnesium alloy." Materials Letters 53, no. 1-2 (2002): 35-39.
[7] Wenwen, Du, Sun Yangshan, Min Xuegang, Xue Feng, Zhu Min, and Wu Dengyun. "Microstructure and mechanical properties of Mg–Al based alloy with calcium and rare earth additions." Materials Science and Engineering: A 356, no. 1-2 (2003): 1-7.
[8] Deng, K. K., K. Wu, Y. W. Wu, K. B. Nie, and M. Y. Zheng. "Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites." Journal of Alloys and Compounds 504, no. 2 (2010): 542-547.
[9] Standard method of tension testing of metallic materials, ASTM Designation E8-E69. “annual book of astm standards” ASTM , Philadelphia.
[10] Dieter, George Ellwood, and David J. Bacon. Mechanical metallurgy. Vol. 3. New York: McGraw-hill, 1986.
[11] Zhang, Xiaonong, Di Zhang, Renjie Wu, Zhengang Zhu, and Can Wang. "Mechanical properties and damping capacity of (SiC w+ B 4 C p)/ZK60A Mg alloy matrix composite." Scripta Materialia 37, no. 11 (1997): 1631-1635.
[12] Ye, Hai Zhi, and Xing Yang Liu. "Review of recent studies in magnesium matrix composites." Journal of materials science 39, no. 20 (2004): 6153-6171.
[13] Zhao, Weigang, Song-Jeng Huang, Yi-Jhang Wu, and Cheng-Wei Kang. "Particle size and particle percentage effect of AZ61/SiCp magnesium matrix micro-and nano-composites on their mechanical properties due to extrusion and subsequent annealing." Metals 7, no. 8 (2017): 293.
[14] Guangyin, Yuan, Sun Yangshan, and Ding Wenjiang. "Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy." Materials Science and Engineering: A 308, no. 1-2 (2001): 38-44.
[15] Huang, Song-Jeng, and Aqeel Abbas. "Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting." Journal of Alloys and Compounds 817 (2020): 153321.
[16] http://me.aut.ac.ir/staff/solidmechanics/alizadeh/Impact%20Test.htm
[17] Grover, Mikell P., and Mikell P. Groover. "Fundamentals of modern manufacturing." (1996).
[18] Paramsothy, M., J. Chan, R. Kwok, and M. Gupta. "The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91." Journal of alloys and compounds 509, no. 28 (2011): 7572-7578.
[19] Czerwinski, Frank, ed. Magnesium Alloys: Design, Processing and Properties. BoD–Books on Demand, 2011.
[20] Suresh, Subra. Fatigue of materials. Cambridge university press, 1998.
[21] Lin, Y. C., Xiao-Min Chen, and Gang Chen. "Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation." Journal of alloys and compounds 509, no. 24 (2011): 6838-6843.
[22] Eisenmeier, G., B. Holzwarth, H. W. Höppel, and H. Mughrabi. "Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91." Materials Science and Engineering: A 319 (2001): 578-582.
[23] Li, Zhenming, Qigui Wang, Alan A. Luo, Penghuai Fu, and Liming Peng. "Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys." International Journal of Fatigue 80 (2015): 468-476.
[24] Aghion, E., B. Bronfin, F. Von Buch, S. Schumann, and H. Friedrich. "Newly developed magnesium alloys for powertrain applications." Jom 55, no. 11 (2003): 30-33.
[25] Ozturk, Koray, Yu Zhong, Zi-Kui Liu, and Alan A. Luo. "Creep resistant Mg-Al-Ca alloys: Computational thermodynamics and experimental investigation." Jom 55, no. 11 (2003): 40-44.
[26] Qudong, Wang, Chen Wenzhou, Zeng Xiaoqin, Lu Yizhen, Ding Wenjiang, Zhu Yanping, Xu Xiaoping, and M. Mabuchi. "Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy." Journal of materials science 36, no. 12 (2001): 3035-3040.
[27] Wang, Qudong, Wenzhou Chen, Wenjiang Ding, Yanping Zhu, and M. Mabuchi. "Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy." Metallurgical and Materials Transactions A 32, no. 13 (2001): 787-794.
[28] Guangyin, Yuan, Sun Yangshan, and Ding Wenjiang. "Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy." Materials Science and Engineering: A 308, no. 1-2 (2001): 38-44.
[29] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[30] Lü, Yizhen, Qudong Wang, Xiaoqin Zeng, Wenjiang Ding, Chunquan Zhai, and Yanping Zhu. "Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys." Materials Science and Engineering: A 278, no. 1-2 (2000): 66-76.
[31] Fan, Yu, Guohua Wu, Hongtao Gao, Guanqun Li, and Chunquan Zhai. "Influence of lanthanum on the microstructure, mechanical property and corrosion resistance of magnesium alloy." Journal of materials science 41, no. 17 (2006): 5409-5416.
[32] Fan, Yu, Guohua Wu, and Chunquan Zhai. "Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy." Materials Science and Engineering: A 433, no. 1-2 (2006): 208-215.
[33] Zhou, Shan-shan, Kun-kun Deng, Jian-chao Li, Shuan-jun Shang, Wei Liang, and Jian-feng Fan. "Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite." Materials & Design 63 (2014): 672-677.
[34] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[35] Eliezer, D., E. Aghion, and FH Sam Froes. "Magnesium science, technology and applications." Advanced Performance Materials 5, no. 3 (1998): 201-212.
[36] http://www.ford.com/servlct/ecmcs/ford/index
[37] http://www.thenewsteel.com
[38] Wenwen, Du, Sun Yangshan, Min Xuegang, Xue Feng, Zhu Min, and Wu Dengyun. "Microstructure and mechanical properties of Mg–Al based alloy with calcium and rare earth additions." Materials Science and Engineering: A 356, no. 1-2 (2003): 1-7.
[39] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[40] Mordike, Barry L., and Franz Hehmann. Magnesium alloys and their applications. DGM Informationsgesellschaft, 1992.
[41] Hua, Qin, Deming Gao, Hongjun Zhang, Yuhui Zhang, and Qijie Zhai. "Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy." Materials Science and Engineering: A 444, no. 1-2 (2007): 69-74.
[42] Schaffer, Paul L., Young C. Lee, and Arne K. Dahle. "The effect of aluminium content and grain refinement on porosity formation in Mg-Al alloys." Magnesium Technology (2001): 87-94.
[43] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[44] Dahle, Arne K., Young C. Lee, Mark D. Nave, Paul L. Schaffer, and David H. StJohn. "Development of the as-cast microstructure in magnesium–aluminium alloys." Journal of light metals 1, no. 1 (2001): 61-72.
[45] Jia, Ruiling, Chuanwei Yan, and Fuhui Wang. "Influence of Al content on the atmospheric corrosion behaviour of magnesium-aluminum alloys." Journal of Materials Sciences and Technology 25, no. 02 (2009): 225-229.
[46] Guangyin, Yuan, Wang Qudong, and Ding Wenjiang. "High temperature deformation behavior of permanent casting AZ91 alloy with and without Sb addition." Journal of materials science 37, no. 1 (2002): 127-132.
[47] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[48] Li, Peijie, Bin Tang, and E. G. Kandalova. "Microstructure and properties of AZ91D alloy with Ca additions." Materials Letters 59, no. 6 (2005): 671-675.
[49] Deng, K. K., K. Wu, Y. W. Wu, K. B. Nie, and M. Y. Zheng. "Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites." Journal of Alloys and Compounds 504, no. 2 (2010): 542-547.
[50] Viswanath, Abhilash, H. Dieringa, KK Ajith Kumar, U. T. S. Pillai, and B. C. Pai. "Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites." Journal of Magnesium and alloys 3, no. 1 (2015): 16-22.
[51] Aghion, E., N. Moscovitch, and A. Arnon. "The correlation between wall thickness and properties of HPDC Magnesium alloys." Materials Science and Engineering: A 447, no. 1-2 (2007): 341-346.
[52] Do Lee, Choong. "Effect of grain size on the tensile properties of magnesium alloy." Materials Science and Engineering: A 459, no. 1-2 (2007): 355-360.
[53] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[54] Surappa, M. K., E. Blank, and J. C. Jaquet. "Effect of macro-porosity on the strength and ductility of cast Al 7Si 0.3 Mg alloy." Scripta Metallurgica 20, no. 9 (1986): 1281-1286.
[55] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[56] Singh, Harpreet, and Arun M. Gokhale. "Visualization of three-dimensional microstructures." Materials characterization 54, no. 1 (2005): 21-29.
[57] Huang, S. J., Y. M. Hwang, Y. S. Huang, and C. C. Huang. "Mechanical properties enhancement of particle reinforced magnesium matrix composites used for hot extruded tubes." Acta Physica Polonica A 127, no. 4 (2015): 1271-1273.
[58] Wang, X. J., N. Z. Wang, L. Y. Wang, X. S. Hu, K. Wu, Y. Q. Wang, and Y. D. Huang. "Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing." Materials & Design 57 (2014): 638-645.
[59] Matin, Afshin, Faramarz Fereshteh Saniee, and Hamid Reza Abedi. "Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method." Materials Science and Engineering: A 625 (2015): 81-88.
[60] Oo, M. K. K., P. S. Ling, and M. Gupta. "Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique." Metallurgical and Materials Transactions A 31, no. 7 (2000): 1873-1881.
[61] Kumar, BV Manoj, Bikramjit Basu, V. S. R. Murthy, and Manoj Gupta. "The role of tribochemistry on fretting wear of Mg–SiC particulate composites." Composites Part A: Applied Science and Manufacturing 36, no. 1 (2005): 13-23.
[62] Aatthisugan, I., A. Razal Rose, and D. Selwyn Jebadurai. "Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite." Journal of Magnesium and Alloys 5, no. 1 (2017): 20-25.
[63] Wang, Xiaojun, Weiqing Liu, Xiaoshi Hu, and Kun Wu. "Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling." Materials Science and Engineering: A 715 (2018): 49-61.
[64] Lan, Jie, Yong Yang, and Xiaochun Li. "Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method." Materials Science and Engineering: A 386, no. 1-2 (2004): 284-290.
[65] Kumar, S. Dinesh, M. Ravichandran, S. Sakthivelu, M. Meignanamoorthy, C. Chanakyan, and S. V. Alagarsamy. "Mechanical properties of magnesium-silicon carbide composite fabricated through powder metallurgy route." Materials Today: Proceedings (2020).
[66] Rashad, Muhammad, Fusheng Pan, Wei Guo, Han Lin, Muhammad Asif, and Muhammad Irfan. "Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg–3Al–1Zn alloy." Materials Characterization 106 (2015): 382-389.
[67] Hwang, S., C. Nishimura, and P. G. McCormick. "Compressive mechanical properties of Mg-Ti-C nanocomposite synthesised by mechanical milling." Scripta materialia 44, no. 10 (2001): 2457-2462.
[68] Karimi, Y., and A. Monshi. "Effect of magnesium chloride concentrations on the properties of magnesium oxychloride cement for nano SiC composite purposes." Ceramics International 37, no. 7 (2011): 2405-2410.
[68] Karr, U., A. Stich, and H. Mayer. "Very high cycle fatigue of wrought magnesium alloy AZ61." Procedia Structural Integrity 2 (2016): 1047-1054.
[69] Reddy, Sooram U., Narasimalu Srikanth, Manoj Gupta, and Sujeet K. Sinha. "Enhancing the properties of magnesium using SiC particulates in sub‐micron length scale." Advanced engineering materials 6, no. 12 (2004): 957-964.
[70] Nan, Z. Y., S. Ishihara, A. J. McEvily, H. Shibata, and K. Komano. "On the sharp bend of the S–N curve and the crack propagation behavior of extruded magnesium alloy." Scripta materialia 56, no. 8 (2007): 649-652.
[71] Bag, A., and W. Zhou. "Tensile and fatigue behavior of AZ91D magnesium alloy." Journal of materials science letters 20, no. 5 (2001): 457-459.
[72] Goodenberger, D. L., and R. I. Stephens. "Fatigue of AZ91E-T6 cast magnesium alloy." (1993): 391-397.
[73] Sajuri, Z. B., Y. Miyashita, and Y. Mutoh. "Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy." Fatigue & Fracture of Engineering Materials & Structures 28, no. 4 (2005): 373-379.
[74] Bhuiyan, Md Shahnewaz, Yoshiharu Mutoh, Tsutomu Murai, and Shinpei Iwakami. "Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments." International Journal of Fatigue 30, no. 10-11 (2008): 1756-1765.
[75] Shiozawa, K., J. Kitajima, T. Kaminashi, T. Murai, and T. Takahashi. "Low-cycle fatigue deformation behavior and evaluation of fatigue life on extruded magnesium alloys." Procedia Engineering 10 (2011): 1244-1249.
[76] Hasegawa, S., Y. Tsuchida, H. Yano, and M. Matsui. "Evaluation of low cycle fatigue life in AZ31 magnesium alloy." International Journal of Fatigue 29, no. 9-11 (2007): 1839-1845.
[77] Fintová, Stanislava, and Ludvík Kunz. "Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation." Journal of the Mechanical Behavior of Biomedical Materials 42 (2015): 219-228.
[78] Němcová, A., P. Skeldon, G. E. Thompson, S. Morse, J. Čížek, and B. Pacal. "Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy." Corrosion science 82 (2014): 58-66.
[79] Szusta, J. "Low cycle fatigue of metallic materials under uniaxialloading at elevated temperature." International Journal of Fatigue 114 (2018): 272-281.
[80] Vaidya, Ajay R., and John J. Lewandowski. "Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites." Materials Science and Engineering: A 220, no. 1-2 (1996): 85-92.
[81] Karparvarfard, S. M. H., Sugrib K. Shaha, Seyed Behzad Behravesh, Hamid Jahed, and Bruce W. Williams. "Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy." International Journal of Fatigue 118 (2019): 282-297.
[82] Jereza, Katie, Ross Brindle, Steve Robison, John N. Hryn, and David J. Weiss. "Bruce M. Cox: Proc. Magnesium Technology 2006, AA Luo." Mater. Sci. Eng 134 (1991): 1197.
[83] Tałach-Dumańska, Marta, Paweł Zięba, Andrzej Pawłowski, Joanna Wojewoda, and Wolfgang Gust. "Practical aspects of discontinuous precipitation and dissolution." Materials chemistry and physics 80, no. 2 (2003): 476-481.
[84] Manna, I., S. K. Pabi, and W. Gust. "Discontinuous reactions in solids." International Materials Reviews 46.2 (2001): 53-91.
[85] Bradai, D., M. Kadi-Hanifi, P. Zięba, W. M. Kuschke, and W. Gust. "The kinetics of the discontinuous precipitation and dissolution in Mg-rich Al alloys." Journal of materials science 34, no. 21 (1999): 5331-5336.
[86] Duly, D., and Y. Brechet. "Nucleation mechanism of discontinuous precipitation in Mg Al alloys and relation with the morphology." Acta metallurgica et materialia 42, no. 9 (1994): 3035-3043.
[87] Duly, D., M. C. Cheynet, and Y. Brechet. "Morphology and chemical nanoanalysis of discontinuous precipitation in Mg Al alloys—I. Regular growth." Acta metallurgica et materialia 42, no. 11 (1994): 3843-3854.
[88] K.N. Tu and D. Tumbull: Acta Metal, 1967, vol. 15, p13l7. 149.
[89] Garg, A., and J. M. Howe. "Grain-boundary precipitation in an Al 4.0 Cu 0.5 Mg 0.5 Ag alloy." Acta metallurgica et materialia 40, no. 9 (1992): 2451-2462.
[90] Tu, King-Ning. "The cellular reaction in Pb-Sn alloys." Metallurgical and Materials Transactions B 3, no. 11 (1972): 2769-2776.
[91] Purdy, G. R., and N. Lange. "Decomposition of alloys, the early stages." In Proc 2nd Acta-Scripta Metallurgica, pp. 214-220. Pergamon Press Oxford, 1984.
[92] Fournelle, R. A., and J. B. Clark. "The genesis of the cellular precipitation reaction." Metallurgical and Materials Transactions B 3, no. 11 (1972): 2757-2767.
[93] R. Armstrong, I. Codd, R. M. Douthwaite & N. J. Petch. "The plastic deformation of polycrystalline aggregates." The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 7.73 (1962): 45-58.
[94] Kubota, K., M. Mabuchi, and K. Higashi. "Review processing and mechanical properties of fine-grained magnesium alloys." Journal of Materials Science 34.10 (1999): 2255-2262.
[95] Mohri, Takeshi, Mamoru Mabuchi, Naobumi Saito, and Mamoru Nakamura. "Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment." Materials Science and Engineering: A 257, no. 2 (1998): 287-294.
[96] ASTM E8 / E8M - 16ae1, Standard Test Methods for Tension Testing of Metallic Materials
[97] ASTM E606 / E606M - 19e1, Standard Test Method for Strain-Controlled Fatigue Testing
[98] ASTM E9 – 19, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature
[99] ASTM E23 – 18, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
[100] Zhou, Xia, Depeng Su, Chengwei Wu, and Liming Liu. "Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites." Journal of Nanomaterials 2012 (2012).
[101] Zhao, Weigang, Song-Jeng Huang, Yi-Jhang Wu, and Cheng-Wei Kang. "Particle size and particle percentage effect of AZ61/SiCp magnesium matrix micro-and nano-composites on their mechanical properties due to extrusion and subsequent annealing." Metals 7, no. 8 (2017): 293.
[102] Qiao, X. G., T. Ying, M. Y. Zheng, E. D. Wei, K. Wu, X. S. Hu, W. M. Gan, H. G. Brokmeier, and I. S. Golovin. "Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)." Materials Characterization 121 (2016): 222-230.
[103] Rashad, Muhammad, Fusheng Pan, Wei Guo, Han Lin, Muhammad Asif, and Muhammad Irfan. "Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg–3Al–1Zn alloy." Materials Characterization 106 (2015): 382-389.
[104] Aydin, Fatih, Yavuz Sun, and M. Emre Turan. "The effect of TiB 2 content on wear and mechanical behavior of AZ91 magnesium matrix composites produced by powder metallurgy." Powder Metallurgy and Metal Ceramics 57, no. 9-10 (2019): 564-572.
[105] Nguyen, Q. B., and M. Gupta. "Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates." Journal of Alloys and Compounds 459, no. 1-2 (2008): 244-250.
[106] Xiao, Peng, Yimin Gao, Feixing Xu, Cuicui Yang, Yefei Li, Zhiwei Liu, and Qiaoling Zheng. "Tribological behavior of in-situ nanosized TiB2 particles reinforced AZ91 matrix composite." Tribology International 128 (2018): 130-139.
[107] Lu, Dehong, Yehua Jiang, and Rong Zhou. "Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing." Wear 305, no. 1-2 (2013): 286-290.
[108] Srinivasan, A., S. Ningshen, U. Kamachi Mudali, U. T. S. Pillai, and B. C. Pai. "Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy." Intermetallics 15, no. 12 (2007): 1511-1517.
[109] Abbas, Aqeel, and Song-Jeng Huang. "ECAP effects on microstructure and mechanical behavior of annealed WS2/AZ91 metal matrix composite." Journal of Alloys and Compounds (2020): 155466.
[110] Huang, Song-Jeng, and Addisu Negash Ali. "Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite." Materials Science and Engineering: A 711 (2018): 670-682.
[111] Huang, Song Jeng, Murugan Subramani, Addisu Ali, Dawit Alemayehu, Jong Ning Aoh, and Pai Chen Lin. "Evaluation of Fatigue Behavior of Silicon Carbide Particles Reinforced with Magnesium Alloy Metal Matrix Composites." In Key Engineering Materials, vol. 830, pp. 113-118. Trans Tech Publications Ltd, 2020.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 不同比例SiCp添加與不同熱處理方式對鎂基複合材料機械性質及疲勞之影響
2. 通過大氣電漿處理與低溫退火對聚甲丙烯酸甲酯(PMMA)微流道進行表面活化鍵合暨血液檢測之研究
3. 應用在金屬空氣電池和水電解之雙功能觸媒材料設計的關鍵參數研究
4. 不同溫度及道次等通道轉角擠製(ECAP)對AZ61/Al2O3鎂基複合材料機械性質及腐蝕之影響
5. 等通道角擠壓(ECAP)和高能球磨(HEBM)對摻雜SiC和Ni的鍛造AZ61-鎂合金進行儲氫應用影響之研究
6. 強化相比例對AZ61/SiC鎂基複合材料鑄錠 及珠擊後之機械性質影響研究
7. 熱處理和嚴重塑性變形加工之WS2 / AZ91金屬基複合材料的組織和力學行為完整性的研究
8. 添加不同比例MoS2及WS2製備AZ91鎂基複合材料之微觀結構以及機械性質研究
9. 不同溫度鍛造加工對 AZ31/SiCp 鎂基複合材料之機械性質及微觀結 構影響
10. 鎂基複合材料機械性質及其熱傳導性之研究
11. WS2無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究
12. 植牙中最佳紋形狀與種類之選擇及植物與骨骼界面之數學分析
13. 碳材及金屬添加劑對經不同製程之AZ31鎂合金儲氫性能之影響
14. 熱處理及劇烈塑性變形SiCp/AZ61鎂合金金屬複合材料的結構完整性評估
15. 結合X-ray缺陷檢測以探討等徑轉角擠型 (ECAP) 對於鎂合金複合材料機械性質的影響