跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭家辰
研究生(外文):Chia-Chen Kuo
論文名稱:探討具有凹槽狀收集電極之二階靜電集塵器內之充電微粒運動特性
論文名稱(外文):Study of Charged-Particle Movement in a Two-Stage Electrostatic Precipitator with a Cavity-Type Collecting-Electrode
指導教授:田維欣
指導教授(外文):Wei-Hsin Tien
口試委員:黃智永曾修暘林怡均溫琮毅
口試委員(外文):Chih-Yung HuangHsiu-Yang TsengYi-Jiun LinTsrong-Yi Wen
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:128
中文關鍵詞:懸浮微粒靜電集塵器微粒影像測速儀
外文關鍵詞:Particulate MatterElectrostatic PrecipitatorParticle Image Velocimetry
相關次數:
  • 被引用被引用:2
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
靜電集塵器是一種高效率之微粒收集系統,可以有效移除空氣中之懸浮微粒。其利用電荷的異性相吸原理,在冠狀電極施加高壓電產生電暈放電而使微粒充電,在庫倫力的作用下,微粒充電後受電場影響向收集板移動進而被捕獲。本研究以微粒影像測速儀(Particle Image Velocimetry, PIV)技術,觀察氯化鈉微粒在凹槽型收集電極之二階靜電集塵模型之運動軌跡。測試時上游風速在範圍1.6 m/s〜2.8 m/s和冠狀電極電壓0 kV〜5.5 kV,觀察與測量每個凹槽中帶電微粒的軌跡並量測集塵效率,驗證微粒移動軌跡與集塵效率之相互關係。研究結果表明在凹槽區域使用不同上游風速與電壓情況下,隨著冠狀電極電壓增加,微粒的電荷數提高,氯化鈉微粒容易被接地的收集板吸引。在比較每個凹槽中之微粒變化發現在A part區域微粒經過中心位置才明顯受電場影響,而B、C part區域中,微粒進入凹槽前已受到電場影響,且第三個凹槽後微粒運動軌跡呈現週期性。微粒流經凹槽區,凹槽內x方向速度遠小於主流之速度,而在凹槽內部y方向向下之速度隨上游風速與電壓的增加而變大。在凹槽內壁面處產生較高之渦度,因此再回流機率增加。比較三種不同設置之收集區,上下收集板之距離影響電場甚大。三者之集塵效率大小為平板>凹槽>低平板收集電極,其中集塵效率趨勢會隨風速的增加而降低,最低可達38.8%;隨著冠狀電極電壓的增加而升高,最高可達99.2%。凹槽設計可降低微粒落入凹槽內之x方向速度,減少再回流率,考量上游風速增加導致y方向速度在凹槽內提升以及上下電極距離增加而降低凹槽設計之作用。
Electrostatic precipitator (ESP) is a highly efficient particle collecting device, which effectively removes suspended particles in the air. Because of principle of opposite attraction of charge, corona discharge is generated when high voltage electric field is applied to the corona electrode. Driven by Coulomb force, the particles are charged and moved to the collection plate. In this study, the trajectories and velocities of the charged NaCl particles in a two-stage ESP with cavity-type collector electrode were measured by Particle Image Velocimetry (PIV). Within a range of upstream velocity from 1.6 m/s ~ 2.8 m/s and the corona electrode voltages of 0 ~ 5.5 kV, the trajectories of the charged particles in each cavity were observed and measured, and the collection efficiency is calculated to verify the relationship between the trajectory of particle movement and the collection efficiency. The results show that at various voltage and upstream flow velocity settings, particle with higher charger number due to increasing corona electrode votage will be faster to move towards the collecting electrode. Comparing the results in each cavity, it is found that the particles in the A part are affected by the electric field when they are over the center position, while in the B and C part, the particles are affected by the electric field before entering the cavity, and the results show that after the third cavity, the trajectory of particles in the cavity starts to show periodity. The velocity of the particles pass through the cavity in the x direction will be smaller than the mainstream flow velocity, The downward velocity in the y direction inside the cavity increases as the upstream velocity and voltage increase. Higher vorticity is generated on the inner wall of the cavity, so the probability of re-entrainment increases. Comparing the three different collection areas, the distance between the upper and lower collection plates affects the electric field value, the collection efficiency from large to small are high plate, cavity, low plate. Collecting efficiency results show higher flow velocity makes the particle collecting efficiency lower, the lowest is 38.8%, whereas higher corona electrodes voltage makes the collecting efficiency higher, up to the highest case of 99.2%. The cavity design can reduce the x-direction velocity of particles when falling into the cavity and reduce the re-entrainment rate. Considering that the increase in upstream velocity causes the y-direction velocity to increase in the cavity and the distance increases between the upper and lower electrodes will reduce the effect of the cavity design.
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xv
第1章 第一章 緒論 1
1.1. 研究背景 1
1.2. 文獻回顧 4
1.2.1. 靜電集塵器之型式 4
1.2.2. 不同形式之冠狀電極 5
1.2.3. 不同形式的收集電極 10
1.2.4. 運用PIV觀察ESP電極附近之流場變化 15
1.3. 實驗目的 17
1.4. 論文架構 17
第2章 第二章 實驗原理與方法 19
2.1. 靜電集塵器原理 19
2.1.1. 電暈放電機制 19
2.1.2. 微粒充電機制 20
2.1.3. 微粒受力機制 21
2.2. 實驗方法 23
2.2.1. ESP設置圖 23
2.2.2. 二階靜電集塵器模型 24
2.2.3. 風扇 26
2.2.4. 高壓直流電源供應器 28
2.3. 流場可視化設置 30
2.3.1. 雷射硬體設備和透鏡組合 30
2.3.2. 攝影機捕捉系統 32
2.3.3. 微粒注入系統 35
2.3.4. 微粒煙霧產生器 35
2.3.5. 氯化鈉微粒與微粒計數器 36
2.4. 影像後處理分析 40
2.4.1. 微粒影像尺寸 45
2.4.2. Tecplot影像後處理步驟 46
2.5. 實驗步驟 47
2.5.1. 靜電集塵實驗流程 47
2.5.2. 實驗變化之參數與實驗條件 48
第3章 第三章 結果與討論 50
3.1. 靜電集塵模型之氯化鈉微粒測速分析結果 50
3.1.1. 電壓-冠狀電極0 kV / 收集板0 kV 52
3.1.2. 小結 62
3.2. 靜電集塵器內之收集區5 kV/12 kV帶電之微粒影像測速分析結果 63
3.2.1. A part x與y方向-冠狀電極5 kV / 收集板12 kV 63
3.2.2. A part氯化鈉微粒之v速度分量剖面分布 67
3.2.3. A part Z方向渦度-冠狀電極5 kV / 收集板12 kV 70
3.2.4. B part x與y方向-冠狀電極5 kV / 收集板12 kV 72
3.2.5. B part氯化鈉微粒之v速度分量剖面分布 75
3.2.6. B part Z方向渦度-冠狀電極5 kV / 收集板12 kV 78
3.2.7. C part x與y方向-冠狀電極5 kV / 收集板12 kV 80
3.2.8. C part 氯化鈉微粒之v速度分量剖面分布 83
3.2.9. C part Z 方向渦度-冠狀電極5 kV / 收集板12 kV 86
3.2.10. 小結 88
3.3. 靜電集塵器之收集區5.5 kV/12 kV帶電之微粒影像測速分析結果 89
3.3.1. A part x與y方向-冠狀電極5.5 kV / 收集板12 kV 89
3.3.2. A part 氯化鈉微粒之v速度分量剖面分布 93
3.3.3. A part Z方向渦度-冠狀電極5.5 kV / 收集板12 kV 96
3.3.4. B part x與y方向-冠狀電極5.5 kV / 收集板12 kV 98
3.3.5. B part氯化鈉微粒之v速度分量剖面分布 101
3.3.6. B part Z方向渦度-冠狀電極5.5 kV / 收集板12 kV 104
3.3.7. C part x與y方向-冠狀電極5.5 kV / 收集板12 kV 106
3.3.8. C part氯化鈉微粒之v速度分量剖面分布 109
3.3.9. C part Z方向渦度-冠狀電極5.5 kV / 收集板12 kV 112
3.3.10. 小結 114
3.4. 靜電集塵器之氯化鈉微粒集塵效率 115
3.4.1. 集塵效率公式 115
3.4.2. 集塵效率之收集電極設置 116
3.4.3. 集塵效率數量(counts)比較 117
3.4.4. 集塵效率重量(weight)比較 119
3.4.5. 靜電集塵器內收集區之平均電場模擬 121
第4章 第四章 結論與未來建議 124
4.1. 結論 124
4.2. 建議與未來工作 125
第5章 參考文獻 126
[1] K.-H. Kim, E. Kabir, and S. Kabir, "A review on the human health impact of airborne particulate matter," Environment International, vol. 74, pp. 136-143, 2015/01/01/ 2015.
[2] R. Guaita, M. Pichiule, T. Maté, C. Linares, and J. Díaz, "Short-term impact of particulate matter (PM(2.5)) on respiratory mortality in Madrid," (in eng), Int J Environ Health Res, vol. 21, no. 4, pp. 260-74, Aug 2011.
[3] G. Oberdörster, E. Oberdörster, and J. Oberdörster, "Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles," (in eng), Environ Health Perspect, vol. 113, no. 7, pp. 823-39, Jul 2005.
[4] J. Podliński, J. Dekowski, J. Mizeraczyk, D. Brocilo, and J.-S. Chang, "Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency," Journal of Electrostatics, vol. 64, no. 3-4, pp. 259-262, 2006.
[5] A. Mizuno, "Electrostatic precipitation," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5, pp. 615-624, 2000.
[6] A. Bologa, H. R. Paur, H. Seifert, T. Wäscher, and K. Woletz, "Novel wet electrostatic precipitator for collection of fine aerosol," Journal of Electrostatics, vol. 67, no. 2-3, pp. 150-153, 2009.
[7] 尹啓銘, "空氣污染物控制設備之評估與選用," 經濟部工業局, vol. 6, pp. 59-78, 1995.
[8] M. Dong, F. Zhou, Y. Shang, and S. Li, "Numerical study on electrohydrodynamic flow and fine-particle collection efficiency in a spike electrode-plate electrostatic precipitator," Powder Technology, vol. 351, pp. 71-83, 2019.
[9] Y. Tong et al., "Separation of fine particulates using a honeycomb tube electrostatic precipitator equipped with arista electrodes," Separation and Purification Technology, vol. 236, p. 116299, 2020/04/01/ 2020.
[10] A. Miller, G. Frey, G. King, and C. Sunderman, "A Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles," Aerosol Science and Technology, vol. 44, no. 6, pp. 417-427, 2010/04/28 2010.
[11] M. Jedrusik, A. Swierczok, and R. Teisseyre, "Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design," Powder Technology, vol. 135-136, pp. 295-301, 2003.
[12] T. Yamamoto et al., "Electrohydrodynamically-Assisted Electrostatic Precipitator for Collection of Low Resistive Dust," in 2008 IEEE Industry Applications Society Annual Meeting, pp. 1-5, 2008.
[13] A. Jaworek, A. Krupa, and T. Czech, "Modern electrostatic devices and methods for exhaust gas cleaning: A brief review," Journal of Electrostatics, vol. 65, no. 3, pp. 133-155, 2007.
[14] T. Y. Wen, I. A. Krichtafovitch, and A. V. J. J. o. A. S. Mamishev, "Numerical study of electrostatic precipitators with novel particle-trapping mechanism," Journal of Aerosol Science, vol. 95, pp. 95-103, 2016.
[15] T.-Y. Wen and Q.-Z. Xue, "Capturing heavy loading microparticles using electrostatic precipitator with square-wave collecting electrode," Powder Technology, vol. 361, pp. 520-528, 2020.
[16] M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, "Particle Image Velocimetry-A Practical Guide," Springer-Verlag Berlin, pp. 1-445, 1998.
[17] H. Miyashita, Y. Ehara, T. Thunoda, J. O. E. Enomoto, and T. Inui, "PIV Analysis of Particle Behavior in Electrostatic Precipitator," Electronics and Communications in Japan, vol. 101, no. 1, pp. 16-23, 2018/01/01 2018.
[18] J. Podlinski, M. Kocik, R. Barbucha, A. Niewulis, J. Mizeraczyk, and A. J. C. J. o. P. Mizuno, "3D PIV measurements of the EHD flow patterns in a narrow lectrostatic precipitator with wire-plate or wire-flocking electrodes," Czechoslovak Journal of Physics, vol. 56, pp. B1009-B1016, 2006.
[19] C. Wang, Z. Xie, B. Xu, J. Li, and X. Zhou, "Experimental Study on EHD Flow Transition in a Small Scale Wire-plate ESP," Measurement Science Review, vol. 16, 06/01 2016.
[20] M. Goldman, A. Goldman, and R. S. Sigmond, "The corona discharge, its properties and specific uses," (in English), Pure and Applied Chemistry, vol. 57, no. 9, pp. 1353-1362, 1985.
[21] J. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
[22] W. C. Hinds, "Aerosol Technology : Properties, Behavior, and Measurement of Airborne Particles," John Wiley and Sons, 2012.
[23] 賴建霖著, 以微粒影像測速儀探討二階靜電集塵器內之充電微粒軌跡 Study of Charged Particle Trajectories in a Two-Stage Electrostatic Precipitator Using Particle Image Velocimetry. 臺北市: 著者, 2019, p. 116葉.
[24] 陳建志, "塗覆量子點之溫度感測流場循跡微粒之研發 Development of Temperature Sensitive Flow Tracer Particles Coated with Quantum Dots," 台灣科技大學機械工程學系學位論文, pp. 1-118, 2018.
[25] W. T. a. E. J. Stamhuis, "PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB," Journal of Open Research Software, vol. 2014.
[26] T.-Y. Wen, H.-C. Wang, I. Krichtafovitch, and A. V. Mamishev, "Novel electrodes of an electrostatic precipitator for air filtration," Journal of Electrostatics, vol. 73, pp. 117-124, 2015.
電子全文 電子全文(網際網路公開日期:20250826)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊