跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施友恩
研究生(外文):Yu-En Shih
論文名稱:奈米金屬粒子/石墨烯混成材料在染料敏化太陽能電池對電極之研究
論文名稱(外文):Study of Metal Nanoparticles/Graphene Nanohybrids as Counter Electrode for Dye-sensitized Solar Cells
指導教授:邱智瑋
指導教授(外文):Chih-Wei Chiu
口試委員:陳良益鄭智嘉
口試委員(外文):Liang-Yih ChenChih-Chia Cheng
口試日期:2018-07-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:奈米金屬粒子染料敏化太陽能電池石墨烯對電極奈米混成
外文關鍵詞:Metal NanoparticlesDye-sensitized solar cellGraphenecounter electrodeNanohybrids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 I
Abstract II
表目錄 VII
圖目錄 VIII
第 一 章 前言與研究動機 1
1.1 前言 1
1.2 研究動機 2
第 二 章 文獻回顧 3
2.1 石墨烯介紹 3
2.1.1 石墨烯 3
2.1.2 還原氧化石墨烯 4
2.1.3 石墨烯的分散 6
2.2 染料敏化太陽能電池之結構組成 8
2.2.1 光陽極電極(Photoanode) 9
2.2.2 敏化材料(Sensitized material) 12
2.2.3 電解液(Electrolyte) 15
2.2.4 對電極電極 16
2.2.5 染料敏化太陽能電池之工作原理 17
2.3 以碳材為基礎的染料敏化電池對電極 18
2.2.1 石墨烯對電極 19
2.3.2石墨烯複合材料之對電極 20
2.3.3奈米金粒子(AuNPs)混摻碳材之對電極 22
2.4 染料敏化電池的發展 23
第 三 章 、實驗方法 26
3.1 實驗流程圖 26
3.2 實驗藥品與儀器 27
3.2.1 藥品/耗材名稱 27
3.2.2 實驗設備 30
3.2.3 分析儀器 32
3.3 實驗步驟 41
3.3.1 基板清洗 41
3.3.2 二氧化鈦層製備 41
3.3.3 光敏化染料吸附 42
3.3.4 製備石墨烯/奈米金粒子混摻粉體 42
3.3.5 製備石墨烯及石墨烯/奈米金粒子分散液 43
3.3.6 對電極之置備 44
3.3.7 封裝染料敏化太陽能電池 44
4.1 有機分散劑 46
4.1.1 以FT-IR鑑定有機分散劑的合成 47
4.1.2 以GPC鑑定有機分散劑的合成結果 49
4.1.3 分散劑於不同有機溶劑的溶解度測試 50
4.2 石墨烯的選擇 52
4.2.1 以Raman鑑定石墨烯 52
4.2.2 以元素分析儀鑑定石墨烯 55
4.2.3 以傅立葉轉換紅外光譜儀鑑定石墨烯 56
4.3 含氧量不同的石墨烯進行染敏太陽能電池之研究 57
4.3.1 石墨烯之分散 57
4.3.2 石墨烯對電極微結構之分析 60
4.3.3 以循環伏安法分析石墨烯對電極 62
4.3.4 以電阻抗頻譜分析石墨烯對電極 64
4.3.5 含氧量不同的石墨烯對電極所構成之染敏太陽能電池效能分析 65
4.4 無導電玻璃石墨烯摻雜奈米金粒子之對電極 68
4.4.1 石墨烯/奈米金粒子之分散 69
4.4.2 石墨烯/奈米金粒子對電極微結構之分析 70
4.4.3 以循環伏安法分析石墨烯摻雜奈米金屬之對電極 72
4.4.4 以電阻抗頻譜分析石墨烯/奈米金粒子對電極 75
4.4.5 無導電玻璃摻雜奈米金屬之石墨烯對電極所構成之染敏太陽能電池效能分析 78
第 四 章 結論 81
第 五 章 參考文獻 82
1. IEA, world energy oulook. 2017.
2. UNEP, Global Trends In Renewable Energy Investment. 2017.
3. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696) p. 666-669.
4. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3) p. 183-191.
5. Novoselov, K.S., et al., A roadmap for graphene. Nature, 2012. 490(7419) p. 192-200.
6. Compton, O.C. and S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 2010. 6(6) p. 711-723.
7. Hummers Jr, W.S., Offeman, R. E. , Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6) p. 1339-1339.
8. Laura J. Cote, J.K., Vincent C. Tung, Jiayan Luo, and a.J.H. Franklin Kim, Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 2010. 83(1) p. 95-110.
9. Dreyer, D.R.P.S.B.C.W.R.R.S., The chemistry of graphene oxide. Chemical Society Reviews, 2010. 39(1) p. 228-240.
10. Paredes, J.I., et al., Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19) p. 10560-10564.
11. Konios, D., et al., Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014. 430 p. 108-112.
12. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459) p. 419-425.
13. Chiu, C.W. and G.B. Ou, Facile preparation of highly electrically conductive films of silver nanoparticles finely dispersed in polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene triblock copolymers and graphene oxide hybrid surfactants. Rsc Advances, 2015. 5(124) p. 102462-102468.
14. Chiu, C.W., et al., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science, 2014. 39(3) p. 443-485.
15. Ahmad, M.S., A.K. Pandey, and N. Abd Rahima, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable & Sustainable Energy Reviews, 2017. 77 p. 89-108.
16. Reyes-Coronado, D., et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(145605) p. 10.
17. NREL, Reference Solar Spectral Irradiance: Air Mass 1.5.
18. Mozaffari, S., M.R. Nateghi, and M.B. Zarandi, An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable & Sustainable Energy Reviews, 2017. 71 p. 675-686.
19. Kong, F.-T., S.-Y. Dai, and Kong-JiaWang, Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2007(75384) p. 13.
20. Kawano, R., et al., High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 164(1-3) p. 87-92.
21. Wang, P., et al., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003. 125(5) p. 1166-1167.
22. Wang, P., et al., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications, 2002(24) p. 2972-2973.
23. Sapp, S.A., et al., Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society, 2002. 124(37) p. 11215-11222.
24. Sonmezoglu, S., C. Akyurek, and S. Akin, High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. Journal of Physics D-Applied Physics, 2012. 45(42) p. 7.
25. Clifford, J.N., et al., Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: Evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate. Journal of Physical Chemistry C, 2007. 111(17) p. 6561-6567.
26. Iqbal, M.Z. and S. Khan, Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes. Solar Energy, 2018. 160 p. 130-152.
27. Carbonaceous Materials and Their Advances as a Counter Electrode in Dye-Sensitized Solar Cells: Challenges and Prospects. Chemsuschem, 2015. 8(9) p. 1510-1533.
28. Lee, J.S., et al., Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Physical Chemistry Chemical Physics, 2012. 14(22) p. 7938-7943.
29. Roy-Mayhew, J.D., et al., Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. Acs Nano, 2010. 4(10) p. 6203-6211.
30. Miao, X.H., et al., Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells. Electrochimica Acta, 2013. 96 p. 155-163.
31. Chang, Q.H., et al., Graphene nanosheets inserted by silver nanoparticles as zero-dimensional nanospacers for dye sensitized solar cells. Nanoscale, 2014. 6(10) p. 5410-5415.
32. Yue, G.T., et al., Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2013. 92 p. 64-70.
33. Ramalingam, K., et al., Free-Standing Graphene/Conducting Polymer Hybrid Cathodes as FTO and Pt-Free Electrode for Quasi-State Dye Sensitized Solar Cells. Chemistryselect, 2016. 1(15) p. 4814-4822.
34. Shakir, S., et al., Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified counter electrode in dye sensitized solar cells. Journal of Materials Science-Materials in Electronics, 2018. 29(6) p. 4602-4611.
35. Kim, H.Y., et al., Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells. Journal of Applied Physics, 2017. 121(24) p. 7.
36. Gratzel, M., Dye-sensitized solar cells. Photochemistry and Photobiology, 2003. 4 p. 145-153.
37. Singh, E. and H.S. Nalwa, Graphene-Based Dye-Sensitized Solar Cells: A Review. Science of Advanced Materials, 2015. 7(10) p. 1863-1912.
38. Martinson, A.B.F., et al., Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. Journal of Physical Chemistry A, 2009. 113(16) p. 4015-4021.
39. A. C. Ferrari, * J. C. Meyer,2 V. Scardaci,1 C. Casiraghi,1 M. Lazzeri,3 F. Mauri,3 S. Piscanec,1 D. Jiang,4 and S.R. K. S. Novoselov, 2 and A. K. Geim4, Raman Spectrum of Graphene and Graphene Layers. Physical Review letters, 2006 p. 5.
40. King, A.A.K., et al., A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Scientific Reports, 2016. 6 p. 6.
41. Bruna, M., et al., Doping Dependence of the Raman Spectrum of Defected Graphene. Acs Nano, 2014. 8(7) p. 7432-7441.
42. Claramunt, S., et al., The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. Journal of Physical Chemistry C, 2015. 119(18) p. 10123-10129.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊