(54.236.58.220) 您好!臺灣時間:2021/03/08 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鈺聖
研究生(外文):Yu-Sheng Chen
論文名稱:白金奈米粒子/奈米碳管混成材料在染料敏化太陽能電池對電極之研究
論文名稱(外文):Facile Preparation of Platinum Nanoparticles/Carbon Nanotubes Nanohybrid Films for Counter Electrodes in Dye-Sensitized Solar Cells
指導教授:邱智瑋
指導教授(外文):Chih-Wei Chiu
口試委員:邱顯堂游進陽
口試委員(外文):Hsien-Tang ChiuChin-Yang Yu
口試日期:2020-01-14
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:染料敏化太陽能電池高分子型分散劑奈米碳管白金奈米粒子
外文關鍵詞:dye-sensitized solar cells(DSSC)polymeric dispersantscarbon nanotubes(CNT)platinum nanoparticles(PtNPs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第 一 章 前言與研究動機 1
1.1 前言 1
1.2 研究動機 2
第 二 章 文獻回顧 3
2.1 碳材介紹 3
2.1.1 碳材料發展簡史 3
2.1.2 奈米碳管介紹 5
2.1.3 奈米碳管的結構與特性 6
2.1.4 奈米碳管的製造方法 9
2.1.5 奈米碳管的分散 9
2.2 染料敏化太陽能電池之結構組成 11
2.2.1 光陽極電極(photoanode) 13
2.2.2 敏化材料(Sensitized material) 16
2.2.3 電解液(Electrolyte) 19
2.2.4 對電極電極 21
2.2.5 染料敏化太陽能電池之工作原理 21
2.3 以碳材為基礎的染料敏化電池對電極 23
2.3.1奈米碳管對電極 23
2.3.2奈米白金粒子(PtNPs)混摻碳材之對電極 26
2.4 染料敏化電池的發展 29
第 三 章 實驗方法 31
3.1 實驗流程圖 31
3.2 實驗藥品與儀器 31
3.2.1 藥品/耗材名稱 31
3.2.2 實驗設備 35
3.2.3 分析儀器 37
3.3 實驗步驟 39
3.3.1 基板清洗 39
3.3.2 二氧化鈦層製備 40
3.3.3 光敏化染料吸附 41
3.3.4 製備奈米碳管/白金奈米金粒子混摻粉體 41
3.3.5 製備奈米碳管及奈米碳管/奈米白金粒子分散液 42
3.3.6 對電極之置備 42
3.3.7 封裝染料敏化太陽能電池 43
第 四 章 結果與討論 44
4.1高分子型有機分散劑 44
4.1.1 以FT-IR鑑定有機分散劑的合成 45
4.1.2 以GPC鑑定有機分散劑的合成結果 51
4.1.3 分散劑於不同有機溶劑的溶解度測試 52
4.2製備良好分散性之奈米碳管分散液 54
4.2.1巨觀檢測有機分散劑對碳管的分散性 54
4.2.2以UV-vis穿透度分析奈米碳管分散情況 56
4.2.3以穿透式電子顯微鏡探討奈米碳管分散性 59
4.3奈米碳管應用在染敏太陽能電池之對電極研究 61
4.3.1 奈米碳管對電極巨觀結構與表面電阻之分析 61
4.3.2 奈米碳管對電極微觀結構分析 63
4.3.3 以循環伏安法分析奈米碳管對電極 65
4.3.4 無導電玻璃之奈米碳管對電極所構成之染敏太陽能電池效能分析 67
4.4奈米碳管摻雜奈米白金粒子之對電極 69
4.4.1 奈米碳管/奈米白金粒子之分散 69
4.4.2 奈米碳管/奈米白金粒子對電極微結構之分析 71
4.4.3 以循環伏安法分析奈米碳管摻雜白金金屬之對電極 73
4.4.4 摻雜奈米白金金屬粒子之奈米碳管對電極所構成之染敏太陽能電池效能分析 76
第 五 章 結論 82
第 六 章 參考文獻 83
1. Gray, R. The biggest energy challenges facing humanity. 2017.
2. Mrsolar. What is the Photovoltaic Effect?. 2010.
3. SEPCO. Solar Power Advantages and Disadvantages. 2012.
4. UNEP. Renewables 2019 Global Status Report. 2019.
5. 沈曾民, 新型碳材料. 2006. 曉園出版社。
6. Y. N. Biglova, N. N. Sigaeva, R. F. Talipov and Y. B. Monakov, Review of Fullerene Organic Chemistry. Oxid. Commun., 2005. 4, 753-798.
7. S. Iijima, Helical Microtubules of Graphitic Carbon. Nat., 1991. 6348, 56-58.
8. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff, Graphene-Based Ultracapacitors. Nano Lett., 2008. 10, 3498-3502.
9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Sci., 2004. 5696, 666-669.
10. A. K. Geim and K. S. Novoselov, The Rise of Graphene. Nat. Mat., 2007. 3, 183-191.
11. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, A Roadmap for Graphene. Nat., 2012. 7419, 192-200.
12. S. Iijima, and T. Ichihashi, Single-Shell Carbon Nanotube of 1-nm Diameter. Nat., 1993. 6430, 603-605.
13. Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang and F. Wei, The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small, 2013. 8, 1237-1265.
14. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam and R. Kizek, Methods for Carbon Nanotubes Synthesis—Review. J. Mater. Chem., 2011. 40, 15872-15884.
15. R.H. Baughman, A.A. Zakhidov and W.A. de Heer, Carbon Nanotubes - the Route Toward Applications. Sci., 2002. 5582, 787-792.
16. E. T. Thostenson, Z. F. Ren and T. W. Chou, Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review. Compos. Sci. Technol., 2001. 13, 1899-1912.
17. T. W. Ebbesen and P. M. Ajayan, Large-Scale Synthesis of Carbon Nanotubes. Nat., 1992. 6383, 220-222.
18. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, Synthesis of Large Srrays of Well-Aligned Carbon Nanotubes on Glass. Sci., 1998. 5391, 1105-1107.
19. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai and P. M. Ajayan, Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Sci., 2002. 5569, 884-886.
20. C. W. Chiu, T. K. Huang, Y. C. Wang, B. G. Alamani and J. J. Lin, Intercalation Strategies in Clay/Polymer Hybrids. Prog. Polym. Sci., 2014. 3, 443-485.
21. S. D. Bergin, Z. Y. Sun, D. Rickard, P. V. Streich, J. P. Hamilton and J. N. Coleman, Multicomponent Solubility Parameters for Single-walled Carbon Nanotube-solvent Mixtures. Acs Nano, 2009. 8, 2340-2350.
22. G. Sun, Z. Liu and G. Chen, Dispersion of Pristine Multi-walled Carbon Nanotubes in Common Organic Solvents. Nano, 2010. 5, 103-109.
23. B. Oregan and M. Gratzel, A Low-cost, High-efficiency Solar-cell Based on Dye-Sensitized Colloidal TiO2 Films. Nat., 1991. 6346, 737-740.
24. T. Minami, Transparent Conducting Oxide Semiconductors for Transparent Electrodes. Semicond. Sci. Technol., 2005. 4, 35-44.
25. J. H. Noh, S. Lee, J. Y. Kim, J. K. Lee, H. S. Han, C. M. Cho, I. S. Cho, H. S. Jung and K. S. Hong, Functional Multilayered Transparent Conducting Oxide Thin Films for Photovoltaic Devices. J. Phys. Chem. C, 2009. 3, 1083-1087.
26. C. Sima, C. Grigoriu and S. Antohe, Comparison of the Dye-sensitized Solar Cells Performances Based on Transparent Conductive ITO and FTO. Thin Solid Films, 2010. 2, 595-597.
27. S. H. Lee, S. H. Han, H. S. Jung, H. Shin, J. Lee, J. H. Noh, S. Lee, I. S. Cho, J. K. Lee, J. Kim and H. Shin, Al-Doped ZnO Thin Film: A New Transparent Conducting Layer for ZnO Nanowire-based Dye-sensitized Solar Cells. J. Phys. Chem. C, 2010. 15, 7185-7189.
28. M. S. Ahmad, A. K. Pandey and N. A. Rahima, Advancements in the Development of TiO2 Photoanodes and its Fabrication Methods for Dye Sensitized Solar Cell (DSSC) Applications. A Review. Renew. Sust. Energ. Rev., 2017. 77, 89-108.
29. D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss and G. Oskam, Phase-pure TiO2 Nanoparticles: Anatase, Brookite and Rutile. Nanotechnol., 2008. 145605, 10.
30. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel, Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency Over 10%. Thin Solid Films, 2008. 14, 4613-4619.
31. NREL. Reference Solar Spectral Irradiance: Air Mass 1.5. 2019.
32. S. Mozaffari, M. R. Nateghi and M. B. Zarandi, An Overview of the Challenges in the Commercialization of Dye Sensitized Solar Cells. Renew. Sust. Energ. Rev., 2017. 71, 675-686.
33. F. T. Kong, S. Y. Dai and K. J. Wang, Review of Recent Progress in Dye-Sensitized Solar Cells. Adv. Optoelectron., 2007. 75384, 13.
34. R. Kawano, H. Matsui, C. Matsuyama, A. Sato, Mabh. Susan, N. Tanabe and M. Watanabe, High Performance Dye-Sensitized Solar Cells using Ionic Liquids as their Electrolytes. J. Photochem. Photobiol. A, 2004. 1-3, 87-92.
35. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Gratzel, Gelation of Ionic Liquid-based Electrolytes with Silica Nanoparticles for Quasi-solid-state Dye-sensitized Solar Cells. J. Am. Chem. Soc., 2003. 5, 1166-1167.
36. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Gratzel, High Efficiency Dye-sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte. Chem. Commun., 2002. 24, 2972-2973
37. S. A. Sapp, C. M. Elliott, C. C. Contado, S. Aramori and C. A. Bignozzi, Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-transfer Mediators in Dye-Sensitized Solar Cells. J. Amer. Chem. Soc., 2002. 37, 11215-11222.
38. S. Sonmezoglu, C. Akyurek and S. Akin, High-efficiency Dye-sensitized Solar Cells using Ferrocene-based Electrolytes and Natural Photosensitizers. J. Phys. D, 2012. 42, 7.
39. J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Gratzel and J. R. Durrant, Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells: Evidence for the formation of a Ruthenium Bipyridyl Cation/iodide Intermediate. J. Phys. Chem. C, 2007. 17, 6561-6567.
40. L. J. Brennan, M. T. Byrne, M. Bari and Y. K. Gun'ko, Carbon Nanomaterials for Dye-sensitized Solar Cell Applications: A Bright Future. Adv. Energy Mater., 2011. 4, 472-485.
41. K. Sun, S. P. Zhang, P. C. Li, Y. J .Xia, X. Zhang, D. H. Du, F. H. Isikgor and J. Y. Ouyang, Review on Application of PEDOTs and PEDOT: PSS in Energy Conversion and Storage Devices. J. Mater. Sci. - Mater. Electron, 2015. 7, 4438-4462.
42. J. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fan, G. G. Luo, Y. Lin, Y. M. Xie and Y. L. Wei, Counter Electrodes in Dye-sensitized Solar Cells. Chem. Soc. Rev., 2017. 19, 5975-6023.
43. M. Z. Iqbal and S. Khan, Progress in the Performance of Dye Sensitized Solar Cells by Incorporating Cost Effective Counter Electrodes. Sol. Energy, 2018. 160, 130-152.
44. G. Veerappan, K. Bojan and S. W. Rhee, Sub-micrometer-sized Graphite As a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells. ACS Appl. Mater. Interfaces, 2011. 3, 857-862.
45. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy and M. Gratzel, Highly Efficient Dye-sensitized Solar Cells Based on Carbon Black Counter Electrodes. J. Electrochem. Soc., 2006. 12, 2255-2261.
46. A. Drygala, L. A. Dobrzanski, M. Szindler, M. P. V. Prokopowicz, M. Pawlyta and K. Lukaszkowicz, Carbon Nanotubes Counter Electrode For Dye-sensitized Solar Cells Application. Arch. Metal. Mater., 2016. 2, 803-806.
47. P. Joshi, L. F. Zhang, Q. L. Chen, D. Galipeau, H. Fong and Q. Q. Qiao, Electrospun Carbon Nanofibers as Low-Cost Counter Electrode for Dye-sensitized Solar Cells. ACS Appl. Mater. Interfaces, 2010. 12, 3572-3577.
48. X. Wang, L. J. Zhi and K. Mullen, Transparent, Conductive Graphene Electrodes for Dye-sensitized Solar Cells. Nano Lett., 2008. 1, 323-327.
49. M. Kouhnavard, N. A. Ludin, B. V. Ghaffari, K. Sopian and S. Ikeda, Carbonaceous Materials and their Advances as a Counter Electrode in Dye-sensitized Solar Cells: Challenges and Prospects. ChemSusChem, 2015. 9, 1510-1533.
50. K. Suzuki, M. Yamaguchi, M. Kumagai and S. Yanagida, Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells. Chem. Lett., 2003. 1, 28-29.
51. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Efficient Dye-sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. ACS Appl. Mater. Interfaces, 2009. 6, 1145-1149.
52. J. G. Nam, Y. J. Park, B. S. Kim and J. S. Lee, Enhancement of the Efficiency of Dye-sensitized Solar Cell by Utilizing Carbon Nanotube Counter Electrode. Scripta Mater., 2010. 3, 148-150.
53. M. H. Shao, Q. W. Chang, J. P. Dodelet and R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev., 2016. 6, 3594-3657.
54. S. Shakir, Y. Y. Foo, N. Rizan, H. Abd-ur-Rehman, K. Yunus, P. S. Moi and V. Periasamy, Electro-catalytic and Structural Studies of DNA Templated Gold wires on Platinum/ITO as Modified Counter Electrode in Dye Sensitized Solar Cells. J. Mater. Sci. - Mater. Electron., 2018. 6, 4602-4611.
55. A. Kaniyoor and S. Ramaprabhu, Gold Nanoparticle Decorated Multi-walled Carbon Nanotubes as Counter Electrode for Dye Sensitized Solar Cells. J. Nanosci. Nanotechnol, 2012. 11, 8323-8329.
56. H. Y. Kim, M. W. Lee, D. H. Song, H. J. Yoon and J. S. Suh, Plasmonic-enhanced Graphene Flake Counter Electrodes for Dye-Sensitized Solar Cells. J. Appl. Phys., 2017. 24, 7.
57. Q. W. Tang, J. L. Duan, Y. Y. Duan, B. L. He and L. M. Yu, Recent Advances in Alloy Counter Electrodes for Dye-sensitized Solar Cells. A Critical Review. Electrochim. Acta., 2015. 178, 886-899.
58. G. T. Yue, J. H. Wu, Y. M. Xiao, M. L. Huang, J. M. Lin, L. Q. Fan and Z. Lan, Platinum/graphene Hybrid Film as A Counter Electrode for Dye-sensitized Solar Cells. Electrochim. Acta., 2013. 92, 64-70.
59. P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Y. F. Huang and Q. G. Li, High-performance and Low Platinum Loading Pt/Carbon Black Counter Electrode for Dye-sensitized Solar Cells. Sol. Energy, 2009. 6, 845-849.
60. K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin and K. C. Ho, A High Performance Dye-sensitized Solar Cell with A Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode. J. Mater. Chem., 2010. 20, 4067-4073.
61. M. X. Wu and T. L. Ma, Platinum-free Catalysts as Counter Electrodes in Dye-sensitized Solar Cells. ChemSusChem, 2012. 8, 1343-1357.
62. U. Ahmed, M. Alizadeh, N. Abd Rahim, S. Shahabuddin, M. S. Ahmed and A. K. Pandey, A Comprehensive Review on Counter Electrodes for Dye Sensitized Solar Cells: A Special Focus on Pt-TCO Free Counter Electrodes. Sol. Energy, 2018. 174, 1097-1125.
63. C. T. Liu, Y. C. Wang, R. X. Dong, C. C. Wang, K. C. Huang, R. Vittal, K. C. Ho and J. J. Lin, A Dual-functional Pt/CNT TCO-free Counter Electrode for Dye-sensitized Solar Cell. J. Mater. Chem., 2012. 48, 25311-25315.
64. M. Gratzel, Dye-sensitized Solar Cells. Photochem. Photobio., 2003. 4, 145-153.
65. I. Chung, B. Lee, J. Q. He, R. P. H. Chang and M. G. Kanatzidis, All-solid-state Dye-sensitized Solar Cells with High Efficiency. Nat., 2012. 7399, 486-494.
66. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, A Stable Quasi-solid-state Dye-sensitized Solar Cell with An Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte. Nat. Mater., 2003. 6, 402-407.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔