跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠成
研究生(外文):Guan-Cheng Chen
論文名稱:島型複合觸媒應用於陰離子交換膜水電解
論文名稱(外文):Island-type hybrid catalysts applied for anion exchange membrane water electrolysis
指導教授:王丞浩
指導教授(外文):Chen-Hao Wang
口試委員:施劭儒楊永欽吳玉娟邱德威
口試委員(外文):Shao-Ju ShihYung-Chin YangYu-Chuan WuTe-Wei Chiu
口試日期:2020-01-21
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:水電解析氧反應非貴金屬觸媒島型複合觸媒
外文關鍵詞:Water electrolysisoxygen evolution reactionnon-precious metal catalystisland-type hybrid catalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1 能源轉換與能源儲存 1
1-2常溫水電解種類 2
1-2-1 鹼性電解水(AEL) 2
1-2-2 質子交換膜電解水(PEMWE) 2
1-2-3 陰離子交換膜電解水(AEMWE) 3
第二章 電化學原理與文獻探討 6
2-1 水電解過電位現象 6
2-2 觸媒材料選擇 8
2-3 文獻探討 10
2-3-1 合金觸媒 10
2-3-2 觸媒結構 11
第三章 研究動機 13
第四章 實驗儀器 14
4-1 實驗材料及藥品 14
4-2 實驗流程 15
4-2-1 鈷鐵氧化物觸媒實驗流程圖 15
4-2-2島型複合觸媒實驗流程圖 16
4-3 實驗儀器與設備 17
4-4 儀器分析原理 18
4-4-1 X光繞射分析儀(X-ray diffraction Spectrometer, XRD) 18
4-4-2 X光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 20
4-4-3比表面積及孔徑分析儀(Surface Area & Mesopore Analyzer 23
4-4-4穿透式電子顯微鏡(Transmission ElectronMicroscope) 25
4-4-5電化學分析儀 27
4-4-6電解槽測試配置 28
4-4-7電解槽組裝 29
第五章 鈷鐵氧化物觸媒作為析氧觸媒應用於陰離子交換膜水電解 32
5-1鈷鐵氧化物觸媒製備 32
5-2 電極製備 32
5-2-1 觸媒工作電極製備 32
5-2-2 電解槽電極製備 33
5-3 結果與討論 34
5-3-1 鈷鐵合金觸媒之穿透式電子顯微鏡分析 34
5-3-2 鈷鐵氧化物觸媒之X光繞射分析 36
5-3-3 鈷鐵氧化物觸媒之X光電子能譜分析 37
5-3-4 不同鈷鐵比例之等溫吸附曲線與比表面積探討 39
5-3-5 析氧反應測試 40
第六章 島型複合觸媒應用於陰離子交換膜水電解 48
6-1 觸媒製備 49
6-1-1 載體製備 49
6-1-2 載體表面沉積觸媒 49
6-2 鐵-鈷島型複合觸媒之穿透式電子顯微鏡分析 49
6-3 鐵-鈷島型複合觸媒之X光繞射分析 51
6-4 鐵-鈷島型複合觸媒之X光電子能譜分析 52
6-5鐵-鈷島型複合觸媒之等溫吸附曲線與比表面積探討 55
6-6析氧反應測試 56
第七章 結論 61
7-1鈷鐵氧化物觸媒作為析氧觸媒應用於陰離子交換膜水電解 61
7-2鈷-鐵島型複合觸媒應用於陰離子交換膜水電解 62
Reference 63
[1] F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, 78 (2005) 661-669.
[2] T. Smolinka, “Fuels - Hydrogen Production / Water Electrolysis,” in Encyclopedia of Electrochemical Power Sources (2009) 394–413
[3] C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew. Chem. International Ed., 53 (2014) 1378-1381.
[4] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. International Journal Hydrogen Energy, 38 (2013) 4901-4934.
[5] P. Salvi, P. Nelli, M. Villa, Y. Kiros, G. Zangari, G. Bruni, A. Marini, C. Milanese, Hydrogen evolution reaction in PTFE bonded Raney-Ni electrodes. International Journal Hydrogen Energy, 36 (2011) 7816-7821.
[6] X. Wu, K. Scott, CuxCo3-xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers. Journal Materials Chemistry, 21 (2011) 12344-12351.
[7] Y.-C. Cao, X. Wu, K. Scott, A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts. International Journal Hydrogen Energy, 37 (2012) 9524-9528.
[8] J. Hnat, M. Paidar, J. Schauer, J. Zitka, K. Bouzek, Polymer anion-selective membranes for electrolytic splitting of water. Part II: Enhancement of ionic conductivity and performance under conditions of alkaline water electrolysis. Journal of Applied Electrochemistry, 42 (2012) 545-554.
[9] Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.Y. Wang, Solid-state water electrolysis with an alkaline membrane. Journal of the American Chemical Society, 134 (2012) 9054-9057.
[10] X. Wu, K. Scott, A polymethacrylate-based quaternary ammonium OH- ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers. Journal Power Sources, 214 (2012) 124-129.
[11] L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, J. Lu, First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy and Environmental Science, 5 (2012) 7869-7871.
[12] D. Aili, M.K. Hansen, R.F. Renzaho, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis. Journal of Membrane Science, 447 (2013) 424-432.
[13] X. Wu, K. Scott, A Li-doped Co3O4 oxygen evolution catalyst for non-precious metal alkaline anion exchange membrane water electrolysers. International Journal Hydrogen Energy, 38 (2013) 3123-3129.
[14] X. Wu, K. Scott, F. Xie, N. Alford, A reversible water electrolyser with porous PTFE based OH- conductive membrane as energy storage cells. Journal Power Sources, 246 (2014) 225-231.
[15] J. Qiao, J. Zhang, J. Zhang, Anion conducting poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells. Journal Power Sources, 237 (2013) 1-4.
[16] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377 (2011) 1-35.
[17] M. Piana, M. Boccia, A. Filpi, E. Flammia, H.A. Miller, M. Orsini, F. Salusti, S. Santiccioli, F. Ciardelli, A. Pucci, H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. Journal Power Sources, 195 (2010) 5875-5881.
[18] J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 5 (2005) 187-200.
[19] M. Mori, T. Mrzljak, B. Drobnic, M. Sekavcnik, Integral characteristics of hydrogen production in alkaline electrolysers. Strojniski Vestnik/Journal of Mechanical Engineering, 59 (2013) 585-594.
[20] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36 (2010) 307-326.
[21] J.P. Singh, N.K. Singh, R.N. Singh, Electrocatalytic activity of metal-substituted Fe3O4 obtained at low temperature for O2 evolution. International Journal Hydrogen Energy, 24 (1999) 433-439.
[22] E.B. Castro, S.G. Real, L.F. Pinheiro Dick, Electrochemical characterization of porous nickel-cobalt oxide electrodes. International Journal Hydrogen Energy, 29 (2004) 255-261.
[23] B. Chi, H. Lin, J. Li, N. Wang, J. Yang, Comparison of three preparation methods of NiCo2O4 electrodes. International Journal Hydrogen Energy, 31 (2006) 1210-1214.
[24] Y. Li, P. Hasin, Y. Wu, NixCo3-XO4 nanowire arrays for electrocatalytic oxygen evolution. Advanced Materials, 22 (2010) 1926-1929.
[25] A. Kalendova, D. Vesely, J. Brodinova, Anticorrosive spinel-type pigments of the mixed metal oxides compared to metal polyphosphates. Anti-Corrosion Methods and Materials, 51 (2004) 6-17.
[26] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135 (2013) 16977-16987.
[27] J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou, Z. Shao, Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 5 (2018).
[28] Z. Wu, Z. Zou, J. Huang, F. Gao, NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Applied Materials and Interfaces, 10 (2018) 26283-26292.
[29] S. Wang, L. Xu, W. Lu, Synergistic effect: Hierarchical Ni3S2@Co(OH)2 heterostructure as efficient bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 457 (2018) 156-163.
[30] S.K. Singh, V.M. Dhavale, S. Kurungot, Low surface energy plane exposed Co3O4 nanocubes supported on nitrogen-doped graphene as an electrocatalyst for efficient water oxidation. ACS Applied Materials and Interfaces, 7 (2015) 442-451.
[31] Y. Qiu, L. Xin, W. Li, Electrocatalytic oxygen evolution over supported small amorphous ni-fe nanoparticles in alkaline electrolyte. Langmuir, 30 (2014) 7893-7901.
[32] W. Yan, Z. Yang, W. Bian, R. Yang, FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon, 92 (2015) 74-83.
[33] J. Wang, T. Qiu, X. Chen, Y. Lu, W. Yang, Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium. Journal Power Sources, 268 (2014) 341-348.
[34] H. Xia, Z. Huang, C. Lv, C. Zhang, A Self-Supported Porous Hierarchical Core-Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction. ACS Catalysis, 7 (2017) 8205-8213.
[35] J. Hu, C. Zhang, X. Meng, H. Lin, C. Hu, X. Long, S. Yang, Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of Materials Chemistry A, 5 (2017) 5995-6012.
[36] B. Li, S. Chen, J. Tian, M. Gong, H. Xu, L. Song, Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Research, 10 (2017) 3629-3637.
[37] G. Liu, D. He, R. Yao, Y. Zhao, J. Li, Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Research, 11 (2018) 1664-1675.
[38] A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeicer, P. Strasser, M. Driess, Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. Journal of the American Chemical Society, 136 (2014) 17530-17536.
[39] Z. kx, C. Jin, Z. Klencsár, D.A.S. Ganeshraja, J. Wang, S. Wang, X. Duan, Cobalt-iron Oxide, Alloy and Nitride: Synthesis, Characterization and Application in Catalytic Peroxymonosulfate Activation for Orange II Degradation. Catalysts, 7 (2017) 138.
[40] T.H. Wondimu, G.C. Chen, D.M. Kabtamu, H.Y. Chen, A.W. Bayeh, H.C. Huang, C.H. Wang, Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. International Journal Hydrogen Energy, 43 (2018) 6481-6490.
[41] R. Zhang, Y.C. Zhang, L. Pan, G.Q. Shen, N. Mahmood, Y.-H. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu, J.J. Zou, Engineering Cobalt Defects in Cobalt Oxide for Highly Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 8 (2018) 3803-3811.
電子全文 電子全文(網際網路公開日期:20250121)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top